import numpy as np import matplotlib.pyplot as plt from plotstyle import * # parameter: rate = 20.0 trials = 10 duration = 500.0 dt = 0.001 drate = 50.0 tau = 0.1; def hompoisson(rate, trials, duration) : spikes = [] for k in range(trials) : times = [] t = 0.0 while t < duration : t += np.random.exponential(1/rate) times.append( t ) spikes.append( times ) return spikes def inhompoisson(rate, trials, dt) : spikes = [] p = rate*dt for k in range(trials) : x = np.random.rand(len(rate)) times = dt*np.nonzero(x<p)[0] spikes.append( times ) return spikes def pifspikes(input, trials, dt, D=0.1) : vreset = 0.0 vthresh = 1.0 tau = 1.0 spikes = [] for k in range(trials) : times = [] v = vreset noise = np.sqrt(2.0*D)*np.random.randn(len(input))/np.sqrt(dt) for k in range(len(noise)) : v += (input[k]+noise[k])*dt/tau if v >= vthresh : v = vreset times.append(k*dt) spikes.append( times ) return spikes def oupifspikes(rate, trials, duration, dt, D, drate, tau): # OU noise: rng = np.random.RandomState(54637281) time = np.arange(0.0, duration, dt) x = np.zeros(time.shape)+rate n = rng.randn(len(time))*drate*tau/np.sqrt(dt) + rate for k in range(1,len(x)) : x[k] = x[k-1] + (n[k]-x[k-1])*dt/tau x[x<0.0] = 0.0 spikes = pifspikes(x, trials, dt, D) return spikes def isis( spikes ) : isi = [] for k in range(len(spikes)) : isi.extend(np.diff(spikes[k])) return np.array(isi) def plotreturnmap(ax, isis, lag=1, max=1.0) : ax.set_xlabel(r'ISI$_i$', 'ms') ax.set_ylabel(r'ISI$_{i+1}$', 'ms') ax.set_xlim(0.0, 1000.0*max) ax.set_ylim(0.0, 1000.0*max) isiss = isis[isis<max] ax.plot(1000.0*isiss[:-lag], 1000.0*isiss[lag:], clip_on=False, **psAm) def plotserialcorr(ax, isis, maxlag=10) : lags = np.arange(maxlag+1) corr = [1.0] for lag in lags[1:] : corr.append(np.corrcoef(isis[:-lag], isis[lag:])[0,1]) ax.set_xlabel(r'lag $k$') ax.set_ylabel(r'ISI correlation $\rho_k$') ax.set_xlim(0.0, maxlag) ax.set_ylim(-1.0, 1.0) ax.plot([0, 10], [0.0, 0.0], **lsGrid) ax.plot(lags, corr, clip_on=False, zorder=100, **lpsAm) def plot_hom_returnmap(ax, spikes): plotreturnmap(ax, isis(spikes)[:200], 1, 0.3) ax.set_xticks(np.arange(0.0, 301.0, 100.0)) ax.set_yticks(np.arange(0.0, 301.0, 100.0)) def plot_inhom_returnmap(ax, spikes): plotreturnmap(ax, isis(spikes)[:200], 1, 0.3) ax.set_ylabel('') ax.set_xticks(np.arange(0.0, 301.0, 100.0)) ax.set_yticks(np.arange(0.0, 301.0, 100.0)) def plot_hom_serialcorr(ax, spikes): plotserialcorr(ax, isis(spikes)) ax.set_ylim(-0.2, 1.0) def plot_inhom_serialcorr(ax, spikes): plotserialcorr(ax, isis(spikes)) ax.set_ylabel('') ax.set_ylim(-0.2, 1.0) if __name__ == "__main__": homspikes = hompoisson(rate, trials, duration) inhomspikes = oupifspikes(rate, trials, duration, dt, 0.3, drate, tau) fig, axs = plt.subplots(2, 2, figsize=cm_size(figure_width, 1.8*figure_height)) fig.subplots_adjust(**adjust_fs(fig, left=6.5, right=1.5)) plot_hom_returnmap(axs[0,0], homspikes) plot_inhom_returnmap(axs[0,1], inhomspikes) plot_hom_serialcorr(axs[1,0], homspikes) plot_inhom_serialcorr(axs[1,1], inhomspikes) plt.savefig('serialcorrexamples.pdf') plt.close()