import numpy as np import matplotlib.pyplot as plt def hompoisson(rate, trials, duration) : spikes = [] for k in range(trials) : times = [] t = 0.0 while t < duration : t += np.random.exponential(1/rate) times.append( t ) spikes.append( times ) return spikes def inhompoisson(rate, trials, dt) : spikes = [] p = rate*dt for k in range(trials) : x = np.random.rand(len(rate)) times = dt*np.nonzero(x
= vthresh : v = vreset times.append(k*dt) spikes.append( times ) return spikes def isis( spikes ) : isi = [] for k in np.arange(len(spikes)) : isi.extend(np.diff(spikes[k])) return isi def plotisih( ax, isis, binwidth=None ) : if binwidth == None : nperbin = 200.0 # average number of isis per bin bins = len(isis)/nperbin # number of bins binwidth = np.max(isis)/bins if binwidth < 5e-4 : # half a millisecond binwidth = 5e-4 h, b = np.histogram(isis, np.arange(0.0, np.max(isis)+binwidth, binwidth), density=True) ax.text(0.9, 0.85, 'rate={:.0f}Hz'.format(1.0/np.mean(isis)), ha='right', transform=ax.transAxes) ax.text(0.9, 0.75, 'mean={:.0f}ms'.format(1000.0*np.mean(isis)), ha='right', transform=ax.transAxes) ax.text(0.9, 0.65, 'CV={:.2f}'.format(np.std(isis)/np.mean(isis)), ha='right', transform=ax.transAxes) ax.set_xlabel('ISI [ms]') ax.set_ylabel('p(ISI) [1/s]') ax.bar( 1000.0*b[:-1], h, 1000.0*np.diff(b) ) # parameter: rate = 20.0 drate = 50.0 trials = 10 duration = 100.0 dt = 0.001 tau = 0.1; # homogeneous spike trains: homspikes = hompoisson(rate, trials, duration) # OU noise: rng = np.random.RandomState(54637281) time = np.arange(0.0, duration, dt) x = np.zeros(time.shape)+rate n = rng.randn(len(time))*drate*tau/np.sqrt(dt)+rate for k in np.arange(1,len(x)) : x[k] = x[k-1] + (n[k]-x[k-1])*dt/tau x[x<0.0] = 0.0 # pif spike trains: inhspikes = pifspikes(x, trials, dt, D=0.3) fig = plt.figure( figsize=(9,4) ) ax = fig.add_subplot(1, 2, 1) ax.set_title('stationary') ax.set_xlim(0.0, 200.0) ax.set_ylim(0.0, 40.0) plotisih(ax, isis(homspikes)) ax = fig.add_subplot(1, 2, 2) ax.set_title('non-stationary') ax.set_xlim(0.0, 200.0) ax.set_ylim(0.0, 40.0) plotisih(ax, isis(inhspikes)) plt.tight_layout() plt.savefig('isihexamples.pdf') plt.close()