\documentclass[addpoints,10pt]{exam} \usepackage{url} \usepackage{color} \usepackage{hyperref} \usepackage{graphicx} \pagestyle{headandfoot} \runningheadrule \firstpageheadrule \firstpageheader{Scientific Computing}{Integrate-and-fire models}{Oct 28, 2014} %\runningheader{Homework 01}{Page \thepage\ of \numpages}{23. October 2014} \firstpagefooter{}{}{} \runningfooter{}{}{} \pointsinmargin \bracketedpoints %\printanswers \shadedsolutions \usepackage[mediumspace,mediumqspace,Gray]{SIunits} % \ohm, \micro %%%%% listings %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \usepackage{listings} \lstset{ basicstyle=\ttfamily, numbers=left, showstringspaces=false, language=Matlab, breaklines=true, breakautoindent=true, columns=flexible, frame=single, captionpos=t, xleftmargin=2em, xrightmargin=1em, aboveskip=10pt, %title=\lstname, title={\protect\filename@parse{\lstname}\protect\filename@base.\protect\filename@ext} } \begin{document} \sffamily %%%%%%%%%%%%%% Questions %%%%%%%%%%%%%%%%%%%%%%%%% \begin{questions} \question \textbf{Statistics of integrate-and-fire neurons} For the following use different variants of the leaky integrate-and-fire models provided in \texttt{lifspikes.m}, \texttt{lifouspikes.m}, and \texttt{lifadaptspikes.m} do generate some spike train data. Use the functions you wrote for the Poisson process to analyze the statistics of the spike trains. \begin{parts} \part Generate a few trials of the two models for two different inputs that result in qualitatively different spike trains and display them in a raster plot. Decide for a noise strength (good values to try are 0.001, 0.01, 0.1, 1). \begin{solution} \begin{lstlisting} spikes = pifspikes( 10, 1.0, 0.5, 0.01 ); %spikes = pifspikes( 10, 10.0, 0.5, 0.01 ); %spikes = lifspikes( 10, 11.0, 0.5, 0.001 ); %spikes = lifspikes( 10, 15.0, 0.5, 0.001 ); spikeraster( spikes ) \end{lstlisting} \mbox{}\\[-3ex] \colorbox{white}{\includegraphics[width=0.48\textwidth]{pifraster02}} \colorbox{white}{\includegraphics[width=0.48\textwidth]{pifraster10}}\\ \colorbox{white}{\includegraphics[width=0.48\textwidth]{lifraster10}} \colorbox{white}{\includegraphics[width=0.48\textwidth]{lifraster15}} \end{solution} \part The inverse Gaussian describes the interspike interval distribution of a PIF driven with white noise: \[ p(T) = \frac{1}{\sqrt{4\pi D T^3}}\exp\left[-\frac{(T-\langle T \rangle)^2}{4DT\langle T \rangle^2}\right] \] where $\langle T \rangle$ is the mean interspike interval and \[ D = \frac{\langle(T - \langle T \rangle)^2\rangle}{2 \langle T \rangle^3} \] is the diffusion coefficient (variance of the interspike intervals $T$ divided by two times the mean cubed). Show in two plots how this distribution depends on $\langle T \rangle$ and $D$. \begin{solution} \lstinputlisting{simulations/inversegauss.m} \lstinputlisting{simulations/inversegaussplot.m} \colorbox{white}{\includegraphics[width=0.98\textwidth]{inversegauss}} \end{solution} \part Extent your function plotting an interspike interval histogram to also report the diffusion coefficient $D$. \begin{solution} \begin{lstlisting} ... % annotation: misi = mean( isis ); sdisi = std( isis ); disi = sdisi^2.0/2.0/misi^3; text( 0.6, 0.7, sprintf( 'mean=%.1f ms', 1000.0*misi ), 'Units', 'normalized' ) text( 0.6, 0.6, sprintf( 'std=%.1f ms', 1000.0*sdisi ), 'Units', 'normalized' ) text( 0.6, 0.5, sprintf( 'CV=%.2f', sdisi/misi ), 'Units', 'normalized' ) text( 0.6, 0.4, sprintf( 'D=%.1f Hz', disi ), 'Units', 'normalized' ) ... \end{lstlisting} \end{solution} \part Compare intersike interval histograms obtained from the LIF and PIF models with the inverse Gaussian. \begin{solution} \lstinputlisting{simulations/lifisih.m} \colorbox{white}{\includegraphics[width=0.48\textwidth]{pifisih01}} \colorbox{white}{\includegraphics[width=0.48\textwidth]{pifisih10}}\\ \colorbox{white}{\includegraphics[width=0.48\textwidth]{lifisih08}} \colorbox{white}{\includegraphics[width=0.48\textwidth]{lifisih16}} \end{solution} \part Plot the firing rate (inverse mean interspike interval), mean interspike interval, the corresponding standard deviation, CV, and diffusion coefficient as a function of the input to the LIF and the PIF with noise strength set to 0.01. \begin{solution} \lstinputlisting{simulations/lifisistats.m} Leaky integrate-and-fire:\\ \colorbox{white}{\includegraphics[width=0.8\textwidth]{lifisistats}}\\ Perfect integrate-and-fire:\\ \colorbox{white}{\includegraphics[width=0.8\textwidth]{pifisistats}} \end{solution} \part Plot the firing rate as a function of input of the LIF and the PIF for various values of the noise strength. \begin{solution} \lstinputlisting{simulations/lifficurves.m} Leaky integrate-and-fire:\\ \colorbox{white}{\includegraphics[width=0.7\textwidth]{lifficurves}}\\ Perfect integrate-and-fire:\\ \colorbox{white}{\includegraphics[width=0.7\textwidth]{pifficurves}} \end{solution} \part Use the functions for computing serial correlations, count statistics and fano factors to further explore the statistics of the integrate-and-fire models! \end{parts} \end{questions} \end{document}