clear clc %% load data load p-unit_spike_times.mat load p-unit_stimulus.mat sample_rate = 20000; %% calculate STA all_times = []; for i = 1:length(spike_times) all_times = cat(1, all_times, spike_times{i}); end [st_average, sta_sd, num] = sta(stimulus(:,2), all_times, 1000, sample_rate); fig = figure(); set(fig, 'PaperUnits', 'centimeters'); set(fig, 'PaperSize', [11.7 9.0]); set(fig, 'PaperPosition',[0.0 0.0 11.7 9.0]); set(fig,'Color', 'white') plot(((1:length(st_average))-1000)/sample_rate, st_average) xlabel('time [s]') ylabel('stimulus') %% reverse reconstruction % make binary representation of the spike times binary_spikes = zeros(size(stimulus, 1), length(spike_times)); estimated_stims = zeros(size(binary_spikes)); for i = 1:length(spike_times) binary_spikes(round(spike_times{i}*sample_rate), i) = 1; estimated_stims(:,i) = conv(binary_spikes(:,i), st_average, 'same'); end fig = figure(); set(fig, 'PaperUnits', 'centimeters'); set(fig, 'PaperSize', [11.7 9.0]); set(fig, 'PaperPosition',[0.0 0.0 11.7 9.0]); set(fig,'Color', 'white') plot(stimulus(:,1), stimulus(:,2), 'displayname','original') hold on plot(stimulus(:,1), mean(estimated_stims,2), 'r', 'displayname', 'reconstruction') xlabel('time [s]') ylabel('stimulus') legend show %% calculate STC % we need to downsample the data otherwise the covariance matrixs gets too % large 20Khz to 1kHz % downsampled_binary = zeros(size(stimulus, 1)/20, length(spike_times)); downsampled_stim = zeros(size(stimulus,1)/20,1); % for i = 1:length(spike_times) % indices = round(spike_times{i}.*1000); % indices(indices < 1) = []; % downsampled_binary(indices, i) = 1; % end for i = 1:length(downsampled_stim) start_index = (i-1) * 20 + 1; downsampled_stim(i) = mean(stimulus(start_index:start_index+19,2)); end [st_average, ~, ~] = sta(downsampled_stim, all_times, 50, 1000);