
Chapter 2: Introduction to Point Processes 
 
I. Point processes are used to describe data that are localized in space or time  
 
In Chapter 1, we saw an example of neuronal activity in the supplemental eye field 
(SEF) expressed in terms of a raster plot and a peri-stimulus time histogram (Fig. 1.1).  
The raster plot shows locations of action potentials in time for multiple trials, and the 
peristimulus time histogram counts the number of such events is small time bins, 
averaged over all of the trials.  These types of plots provide a means to express data 
that consists of discrete events localized in time.   
 
Analyzing data of this sort presents its own unique challenges, and poses its own set of 
questions.  What are the different ways to describe the data?  What types of stochastic 
models are appropriate for explaining the structure in the data?  How can we measure 
how well the data is described by a particular model? In order to address these 
questions, we require a specific mathematical structure that can handle data of this sort. 
 
A temporal point process is a stochastic, or random, process composed of a time-
series of binary events that occur in continuous time (Daley and Vere-Jones, 2003).  
They are used to describe data that are localized at a finite set of time points.  As 
opposed to continuous-valued processes, which can take on any of countless values at 
each point in time, a point process can take on only one of two possible values, 
indicating whether or not an event occurs at that time.  In a sense, this makes the 
probability models used to describe point process data relatively easy to express 
mathematically.  However, point process data are often inappropriately analyzed, 
because most standard signal-processing techniques are designed primarily for 
continuous-valued data.  A fundamental understanding of the probability theory of point 
processes is vital for the proper analysis of point process data. 
 
The study of point processes is especially crucial for neural data analysis.  Brain areas 
receive, process, and transmit information about the outside world via stereotyped 
electrical events, called action potentials or spikes.  Spikes are the starting point for 
virtually all of the processing performed by the brain.   
 
The firing properties of many classes of neurons are known to correlate to specific 
extrinsic signals such as sensory stimuli or behavioral or motor outputs.  For example, 
auditory signals are transduced by the cochlea into spiking patterns in collections of 
neurons, each of which respond to a particular frequency.  These correlations are 
present not only in sensory neurons near the periphery of the CNS but also in those that 
are many synapses removed from the periphery.  For example, cells in the CA1 region 
of the rat hippocampus exhibit place field structure, whereby their firing properties 
correlate with the animal’s location within its environment.  Similarly, in motor cortex, the 
plan for a complex body movement is represented in the ensemble firing of neurons 
tuned to various kinematic and kinetic features of the desired movement.  The fact that 
neurons over a broad range of neural systems represent information about external 
biological and behavioral signals gives rise to the concept of neural coding.  Under this 
viewpoint, neural firing is viewed as a type of coded language from which outside 
observers of the spike train sequences could decode information about the outside 
world, if only they had appropriate neural models with which to decipher these signals.  
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Therefore, cracking the neural code involves studying the relation between brain signals 
and these external biological signals. 
 

Figure 1. Example of spiking activity of a neuron in the human subthalamic nucleus.  (This is a 
placeholder figure only)  
 
The timing of spiking activity is related to an underlying membrane voltage process that 
is typically not recorded for in-vivo experiments.  Figure 1 is an example of a typical 
extracellular voltage trace showing the spiking activity of a single neuron.  The 
stereotyped nature of these action potentials suggests that the information contained in 
sequences of spiking activity, or spike trains, is not related to the shape of the voltage 
trace for any particular spike, but rather to the frequency and timing of these events.  At 
the same time, a neuron’s responses to repeated presentations of the same stimulus are 
stochastic.  That is, with multiple presentations of a stimulus to a neuron or ensemble, 
the set of resulting spikes will differ in their exact timing, although they may share 
common statistical features.  In some brain systems, information about an encoded 
signal can be transmitted in a small number of spikes or in the exact arrival times of 
these events.  Taken together, these properties of neural spiking suggest that they are 
most appropriately modeled as point processes. 
 
Example 1. Retinal Neuron Under Constant Light and Environmental Conditions 
 
Neurons in the retina typically respond to patterns of light displayed over small sections 
of the visual field.  However, when retinal neurons are grown in culture and held under 
constant light and environmental conditions, they will still spontaneously fire action 
potentials.  In a fully functioning retina, this spontaneous activity is sometimes described 
as background firing activity, which is modulated as a function of visual stimuli. 
 
Figure 2 shows the spiking activity of one such neuron firing spontaneously over a 
period of 30 seconds.  Even though this neuron is not responding to any explicit stimuli, 
we can still see structure in its firing activity.  Although most of the interspike intervals 
are shorter than 20 msec, a significant fraction of these ISIs are much longer, on the 
order of 60-120 msec.  We can also observe bursts of firing with multiple spikes arriving 
in quick succession of one another. 
 
Spontaneous spiking activity that does not clearly relate to any external biological or 
behavioral signals is useful for constructing simple models for how each spike relates to 
the neuron’s past spiking history, and can help us understand the fundamental 
biophysical properties of action potential generation.  We shall see that history 
dependence is an important component of virtually all neural spiking activity and that 
accurate models of history dependence are essential in fully describing most spiking 
data. 
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Figure 2.  Spontaneous spiking activity of a goldfish retinal neuron in culture under constant light 
and environmental conditions over 30 seconds. A) Retinal ganglion cell (taken from web, may be 
copyrighted) B) Histogram of interspike intervals. C) Spike train - times series of spiking data.  

 
Example 2. Spiking activity of a primary motor cortical (M1) Neuron 
 
The spiking activity of neurons in primate motor cortex has been shown to relate to 
intended motor outputs, such as limb reaching movements.  Experiments where a 
monkey performs a two-dimensional reach have shown velocity dependent cosine 
tuning, whereby a motor cortical neuron fires most when the hand moves in a single 
preferred direction and the intensity drops off as a cosine function of the difference 
between the intended movement and that preferred direction, and additionally increases 
with increasing movement speed.  Figure 3 shows an example of the spiking activity of a 
neuron in primate motor cortex as a function of hand movement direction during a 
center-out reaching task.  The neuron fires most intensely when the hand moves in a 
direction about 170 degrees from east.  These firing patterns have also been shown to 
vary as a function of movement speed (Moran & Schwartz, (1999)) 
    

 
Figure 3.  Cosine tuning in primate motor cortex. A) Spike rasters for a center out task with eight 
principal directions. B) Spike count as a function of direction shows a sinusoidal trend. (Placeholder 
figure, may be copyrighted) 
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Example 3. Conditional Intensity Function for Hippocampal Neuron 
 
Neurons in rodent hippocampus have spatially specific firing properties, whereby the 
spiking intensity is highest when the animal is at a specific location in an environment, 
and falls off as the animal moves further away from that point.  Such receptive fields are 
called place fields, and neurons that have such firing properties are called place cells.  
Figure 4 shows an example of the spiking activity of one such place cell, as a rat 
executes a free-foraging task in a circular environment.  The rat’s path through this 
environment is shown in blue, and the location of the animal at spike times is overlain in 
red.  It is clear that the firing intensity is highest slightly to the southwest of the center of 
the environment, and decreases when the rat moves away from this point.   
 

 
Figure 4.  Movement trajectory (blue) and hippocampal spiking activity (red) of a rat during a free-
foraging task in a circular environment.  

 
 
Neural spike trains are described by temporal point processes because the spike events 
are localized in time.  It is also possible to use point process theory to model data that is 
localized at a discrete set of locations in space or in both space and time.  These models 
are called spatial and spatiotemporal point processes respectively.  The spike sorting 
problem, that is, the problem of determining how many neurons are contributing to the 
firing activity recorded on a set of electrodes and assigning each spike to the neuron that 
generated it, can be considered a clustering problem on a spatial point process.  The 
space in which these spikes occur is a high-dimensional abstract space describing 
possible spike waveforms.  Each individual spike has a particular waveform, and the 
overall spiking activity from a single cell will cluster in a small region of this space.  By 
modeling the probability of spiking for each neuron, electrophysiologists can assign each 
spike to a single neuron and determine their confidence in the classification results.   
 
Here, we focus on theory related to temporal point processes.  Unless otherwise noted, 
when we refer to a point process it will be assumed to relate to spiking activity in time.  
The theory and methods associated with spatial and spatiotemporal point processes are 
analogous to those of pure temporal point processes.  When indicated, we will point out 
extensions of the theory as they apply specifically to spatial point processes. 
 
Another neuroscience application that makes good use of point process methods is 
nuclear medicine imaging, such as positron emission tomography (PET).  To perform a 
PET scan, clinicians introduce a radioisotope that has been incorporated into a 
metabolically active molecule into the patient’s bloodstream.  These molecules become 
concentrated in specific tissues and the radioisotopes decay, emitting positrons.  These 
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emissions represent a spatiotemporal point process since they are localized occurrences 
throughout the tissue and in time.  After being emitted, these positrons interact with 
nearby electrons, producing a pair of photons that shoot out in opposite directions and 
are detected by a circular ring of photosensors.  The arrival of photons at each sensor 
represents a temporal point process, and by characterizing the temporal interactions 
between arrivals at multiple sensors, it is possible to infer the original location of the 
positron emission.  By observing and inferring the locations of many such occurrences, it 
is possible to construct an image of specific metabolically active tissues.    
 
The theory of point processes has also been applied to many physical phenomena 
outside of the neurosciences.  For example, temporal point processes have been used 
to characterize the timing and regularity of heart beats (Barbieri and Brown, 2005).  In 
geology, point processes have been used to describe geyser eruptions (Azzalini and 
Bowman, (1990)). Spatiotemporal point processes have been used to characterize and 
predict the locations and times of major earthquakes (Ogata, 1988).  For each of these 
processes as is true for neuronal spike events, there is an underlying continuous-valued 
process that is evolving in time and the associated point process event occurs when the 
underlying continuous process crosses a threshold. The continuous process for the 
electrical event preceding the contraction of the ventricles is like for a neuronal spike 
event, a subthreshold membrane voltage. The continuous process underlying a geyser 
eruption is water pressure, whereas the continuous process underlying an earthquake is 
pressure between the tectonic plates on either side of a geological fault line.  
 
 
II. A point process may be specified in terms of spike times, inter-spike intervals, 
or spike counts. 
 
As with any random signal, we can express the data we observe equivalently in terms of 
multiple collections of random variables.  Let’s take a closer look at some of the different 
ways of describing point process data.  As is standard with probability theory, we will use 
capital letters to indicate random variables and lower case variables to indicate the data 
values that they take, unless otherwise indicated.   
 
Let  be random variables describing the occurrence times or spike times of a 
point process.  A realization of a point process is the event 

1 2, ,...S S

1 1 2 2, ,...S s S s= =  for some 
collection of times .  Let  be a set of random variables 
describing the possible waiting times between occurrences, or inter-spike intervals.  We 
can compute the waiting times from the spike times by taking the difference between 
subsequent spike times.  Mathematically, 

1 20 ...s s< < < 1 2, ,...X X

1 1X S=  and 1i i iX S S −= − .  Similarly, we can 
compute the spike times by taking the cumulative sum of all the waiting times.  That is, 

.  Clearly, there is a one-to-one correspondence between any set of spike 

times and any set of inter-spike intervals.   
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Figure 5. Multiple specifications for point process data. 

 
Another useful way to describe a set of spiking observations is in terms of the number of 
spikes observed over any time interval.  We define  the counting process, as the 
total number of spikes that have occurred up to and including time t  (Fig. 5).  The 
counting process gives the number of spikes observed in the interval (

( ),N t

]0, t .  If we let 

 denote the total number of spikes observed in an arbitrary interval 
1 2( , )t tNΔ ( ]1 2,t t , then 

we can compute this from the counting process, 
1 2( , ) 2 1( ) ( )t tN N t N tΔ = − .   is 

sometimes called the increment of the point process between  and .  We see that 
keeping track of the times at which the counting process increases, is equivalent to 
keeping track of the spike events. Therefore, characterizing the spike events is 
equivalent to characterizing the counting process, and vise versa.  

1 2( , )t tNΔ

1t 2t

 
For both of the spike time and the inter-spike interval process, the index of the variable is 
discrete, indicating to which spike event we are referring, while the set of possible values 
that the variable can take on is continuous.   refers to the time of the first spike, and 
can take on any value in the range [0

1S
, )∞ .  The counting process, , on the other 

hand, has a continuous index, indicating a point in time, while the set of possible values 
that it can take at any instant are discrete integers.  Clearly, then, the probability 
distributions associated with these different random variables will take different forms.  
However, we can use these different variables to express the same events.  For 
example, the set of times {

( )N t

}: ( )t N t j<  when the counting process is less than some 

value j  is equivalent to the set of times { }: jt S t>  when the thj  spike has not yet 

occurred.  Both of these express the set of all times that precede the thj  spike, but they 
do so using distinct random variables.  Specifying any one of the spike times, inter-spike 
intervals, or counting process fully specifies the other two and fully specifies the point 
process as a whole.  It is useful to have multiple equivalent expressions for the same 
random process so that if the probability distribution used to describe one data set is 
complicated, we can transform the data set into something easier to work with, without 
losing any information about the process. 
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The spike time, inter-spike interval, and counting processes are all continuous time 
specifications of a point process.  It is often useful, both for developing intuition and for 
constructing data analysis methods, to consider point processes in discrete time.  One 
approach for constructing a discrete-time representation of a point process is to take the 
observation interval ( ]0,T  and break it up into  small, evenly spaced bins.  Let 

, and , for 

n
/t T nΔ = kt k= ⋅Δt n1,...,k = .  We can now express a spike train in terms of 

discrete increments 1( ) ( )k k kN N t N t −Δ = − , which count the number of spikes in a single 
bin.  If  is small enough so that the process cannot fire more than one spike in a 
single bin, then the set of increments 

tΔ
{ } 1,...,k k

N
=

Δ
n
 is just a sequence of zeros and ones 

indicating in which bins spikes are observed (Fig. 5). 
 
Whereas the continuous time specifications for a spike train contain all of the possible 
information about the process, this discrete time description loses information about the 
precise timing of spikes within a bin.  However, in the limit as the discrete-time bin size, 

, goes to zero, the discrete-time increments become as informative as the 
continuous-time descriptions, and the likelihoods, probability distributions, and 
estimation algorithms associated with the discrete-time methods converge to their 
continuous-time counterparts.  In many cases, the theory and analysis methods will be 
easier to develop and implement in discrete-time.   

tΔ

 
 
III. Point processes can display a wide variety of history-dependent behaviors. 
 
We will characterize different classes of point processes based on the probability of firing 
a spike in a small time bin.  One important feature of any particular point process is how 
the history of past firing activity affects the probability of firing a spike now.  In some 
cases, especially when the occurrences are rare compared to the time scale of the 
underlying process or the effect of history has been averaged out by combining multiple 
point processes, Poisson processes can accurately describe spiking activity.  For 
example, when the spontaneous spiking activity from multiple neurons is recorded on a 
single electrode and left unsorted, the past firing of one neuron may have no effect on 
the firing probabilities of the other neurons, so that the combined spiking activity shows 
little to no history dependence. 
 
However, in many physical systems that produce point process data, history 
dependence in an expected consequence of the mechanisms underlying the generation 
of each occurrence.  In particular, neural spike trains display a wide variety of history 
dependent behaviors.  The electrophysiological properties of neural membranes limit 
how fast a neuron can spike immediately after another spike.  This leads to an absolute 
refractory period following a spike, when the neuron is physically unable to fire another 
spike, no matter what the stimulus, and to a relative refractory period after that, during 
which the neuron can fire a spike, but requires a more effective stimulus in order to do 
so.  Additionally, many neurons exhibit bursting behavior, characterized by collections of 
spikes firing in rapid succession.  Another example of history dependence is oscillatory 
spiking activity.  In many systems, neurons tend to fire in specific frequency bands.  For 
example, neurons in the CA1 region of rodent hippocampus tend to fire at particular 
phases of the EEG theta rhythm (Buzsaki et al., (1983)).  In human patients with 
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Parkinson’s disease, neurons exhibit a complex pattern of inhibition and excitation 
causing them to fire more often 10-20 msec after a previous spike (Levy et al., 2000).   
 
In order to model these history-dependent behaviors, we could start by describing how 
the probability of a spike in a small time bin depends on the time since the previous 
spike.  If a point process depends only on the previous spike time then that implies that 
the inter-spike intervals are independent.  In this case, it might be most appropriate to 
model the ISI distribution rather than the spiking probability in a small time bin.  
However, to capture more complicated behaviors such as bursting or oscillatory spiking, 
it may be necessary to go back more than one spike in the past.  In those cases, we will 
need a general framework to describe arbitrary history dependencies.  We will start by 
looking at Poisson processes, which have no history dependence.  Next we will examine 
renewal processes, which have the simplest form of non-trivial history dependence, that 
is, they depend only on the time of the most recent spike.  Finally we will discuss a 
framework for describing general point processes that can exhibit complex patterns of 
history dependence, such as those observed in real physical and physiological systems.  
 
 
IV. Poisson processes are point processes for which spiking probabilities do not 
depend on occurrence or timing of past spikes. 
 
Perhaps the simplest class of point process model is the Poisson process.  As we shall 
see, Poisson processes are characterized by the fact that the probability of firing a spike 
in a small time interval is independent of the firing activity at all other times.  In particular, 
this means that Poisson processes are independent of their past spiking history.  The 
probability models used to describe these processes make use of this independence 
assumption and hence the methods associated with fitting models, measuring 
goodness-of-fit, and making inferences about Poisson data are easy to implement and 
understand.  For this reason, Poisson processes are often the first-order models used to 
characterize spiking systems.  However, as we will see, most neural data is not well 
described as a Poisson process.  However, developing the theory associated with 
Poisson processes will be extremely useful when generalizing to arbitrary history-
dependent point processes. 
 
All Poisson processes possess this history independence property.  If we further assume 
that the spiking probability models do not depend on time, then we get a simple or 
homogeneous Poisson process.  A simple Poisson process is characterized by a 
single rate parameter, λ .  In order to develop an intuition about simple Poisson 
processes, we will provide three different, but equivalent definitions, in terms of different 
random variables. 
 
Definition 1:  A Poisson process of rate λ  is a point process satisfying the following 
conditions: 

a) For any interval, , ( ),t t t+ Δ [ ]( , ) ~ Poist t tN tλ+ΔΔ ⋅Δ . 

b) For any non-overlapping intervals, ( ),t t t+ Δ  and ( ),s s s+ Δ ,  and ( ,t t tN +ΔΔ )

)( ,s s sN +ΔΔ  are independent.   
 
The first condition states that for any time interval, the point process increment for that 
interval is a Poisson random variable, with parameter tλ ⋅Δ .  Remember that the 
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expectation of a Poisson random variable is just equal to its parameter.  Here, the 
parameter, and hence the expected number of spikes in an interval scales linearly with 
the length of that interval.  Notice that the distribution of each increment depends on tΔ , 
the size of the interval, but not on , the starting time of the interval.  Since this 
distribution does not depend on t , we say that it is stationary.  The second condition 
states that increments from non-overlapping intervals are independent.  In other words, 
the distribution of the number of events in any interval does not depend on any of the 
spiking activity outside that interval.  Therefore, an equivalent statement of this definition 
is that a Poisson process is a point process with stationary, independent increments. 

t

 
If we discretize the observation interval into equally sized bins of size , the discrete-
time increments of a Poisson process are independent, identically distributed (i.i.d.) 
according to a Poisson distribution with parameter 

tΔ

tλ ⋅Δ .  Each of the discrete time bins 
are disjoint, and therefore all of the increments are independent.  It is this definition that 
gives the Poisson process its name.  A stochastic process is just an indexed collection of 
random variables, and here we have a collection of random increments, indexed by time, 
each of which is Poisson. 
 
Another important feature of Poisson processes that is evident from this definition is the 
fact that in any interval, the expectation of the number of spikes fired is exactly equal to 
the variance of the number of spikes fired.  This feature will become important when we 
develop statistical tests to determine whether Poisson process models accurately 
describe the structure in observed spiking data. 
 
There is one technical point we need to check in order to make sure that this definition is 
self consistent.  How can we be sure that it’s possible that the distribution of any sized 
interval is always Poisson?  That is, if we have two adjacent intervals, each of which has 
a Poisson increment, will it necessarily be the case that the increment over both 
intervals, which is just the sum of those two increments, will also be Poisson?  In the 
appendix to this chapter (Section AI), we present a simple proof that shows that this is 
always the case, and that the above definition is consistent. 
 
Our second definition of a Poisson process focuses on the discrete time increments for 
small time steps.  For most physical systems, and certainly for neural spiking data, it is 
possible to pick a discrete time bin size, tΔ , such that at most one spike can fire in any 
one bin.  When this is true, we say that the point process is orderly, since this ensures 
that it is always possible to tell which of two spikes occurs first and to therefore put them 
in chronological order.   
 
Clearly the expected number of spikes in a bin will decrease as the length of that interval 
becomes small.  If the length of a bin becomes sufficiently small then the probability of 
firing no spikes is close to one, the probability of firing a single spike is small, and the 
probability of firing more than one spike is negligibly small.  In this case, the probability 
structure of the process in a sufficiently small bin becomes equivalent to just flipping a 
biased coin.  This reasoning leads to the following definition for a Poisson process. 
 
Definition 2: Partition the observation interval, , into regular bins of size , and let 
each  be an independent Bernoulli[

(0, ]T tΔ

kNΔ ]p  random variable with p tλ= ⋅Δ .  Then in the 
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limit as , the distribution of the counting process 0tΔ →
1

( )
k

k
i

N t N
=

i= Δ∑  will approach 

that of the counting process for a Poisson process of rate λ . 
 
In other words, a Poisson process is the limit of an independent Bernoulli process.  This 
definition provides some fundamental intuition about Poisson processes and point 
processes in general.  As the time interval we consider becomes sufficiently small so 
than no more than one spike can occur in any bin, we only need to characterize the 
probability, p , of observing a spike in that bin.  The probability of not having a spike in 
that bin is then 1 p− , and the probability of having more than one spike in that bin is 
negligibly small.  In this case, the Poisson distribution from Definition 1 is nearly identical 
to a Bernoulli distribution.  For a simple, or homogeneous Poisson process, each bin has 
the same probability of having a spike, and that probability is entirely determined by the 
rate of the Poisson process and the length of each bin.  This is equivalent to the 
stationary increment property we discussed with respect to the first definition of the 
Poisson process. 
 
What is the appropriate bin size in order to ensure that at most one spike can be 
observed in a single bin?  That depends on the process being modeled.  For the spiking 
activity of a neuron, this assumption is biophysically plausible because neurons have an 
absolute refractory period (Kandel, Schwartz, and Jessel, 2000).  A bin length of 

millisecond is typically sufficient to ensure that at most one spike can fire in any 
bin.  

1tΔ ≤

 
Both of these definitions for a Poisson process relate to the distribution of the point 
process increments.  In the appendix to this chapter (Section AII), we prove that these 
two definitions are equivalent.  Instead of defining the Poisson process in terms of the 
increments process, we can equivalently define it in terms of the waiting time between 
occurrences by defining the inter-spike interval (ISI) distribution.  Once we define the 
probability model for the increments, it implicitly defines a probability structure for any 
other random variables that describe the same data.  Let iX  be the inter-spike interval 

between the  and  spike times.  Then the event that st( 1)i − thi iX t>  for some time t  is 
equivalent to the event that 

1 1( , ] 0
i iS S tN
− − +Δ = .  By definition 1, 

( ) ( 1 1( , ]Pr Pr 0
i i

t
i S S t )X t N e λ

− −

−
+> = Δ = = .  Therefore, the cumulative distribution function 

(CDF) for the ISIs is ( )( ) Pr 1
i

t
X iF t X t e λ−= ≤ = − , which is the CDF of an exponential 

random variable with mean [ ] 1
iE X λ−= .  Furthermore, since the spiking probabilities of 

a Poisson process do not depend on the occurrences or times of past spikes, is follows 
that the time between two spikes does not depend on the ISI between any other spikes.  
This argument leads to our third equivalent definition for a Poisson process. 
 
Def 3. A Poisson process of rate λ  is a point process with i.i.d exponential ISIs with 
mean 1λ− . 
 
The fact that they have exponential waiting times leads to another important feature of 
simple Poisson processes.  The waiting time from any point in time until the next spike 
time is independent of the time since the last spike, or of any other spiking activity in the 
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past.  This characteristic of Poisson processes is known as the memoryless property.  
Mathematically, if we let iX  be the  waiting time then the memoryless property can be 

written 

thi

( ) (Pr Pr |i i )iX t X s t X> = > + > s .  That is, if we’ve already waited a time s  
since the last spike, and haven’t observed any new spikes in that time, then the 
probability distribution of the remaining time to wait until the next spike is the same as 
the original waiting time distribution right after the last spike.  It is easy to see that this is 
the case if the iX s are i.i.d. exponential, ( )Pr t

iX t e λ−> = .  In this case,   

( ) ( )
( )

( )
( )

( )Pr , Pr
Pr |

Pr Pr

t s
i i i t

i i s
i i

X s t X s X s t eX s t X s e
X s X s e

λ
λ

λ

− +
−

−

> + > > +
> + > = = = =

> >
.   

 
This definition reinforces the idea that the spiking distribution for Poisson processes 
does not depend on past spike times or occurrences.  Just as the distribution of any 
increment does not depend on past spiking activity, so too is the distribution of the time 
you have to wait until the next spike.  Not only is it the case that the Poisson process is 
memoryless, but it can be readily shown that it is the only memoryless process (Ross, 
1996).  
 
 
Inhomogeneous Poisson processes have time-varying firing rates. 
 
We made two major assumptions in defining a simple Poisson process: 1) that the 
increments were stationary, and 2) that they were independent for non-overlapping 
intervals. The first step in modeling a larger class of point processes is to eliminate the 
stationarity assumption.  In other words, we would like to construct a class of models 
where the probability of firing a spike in a small interval varies in time. 
 
Perhaps the easiest place to start is with our second definition for the simple Poisson 
process.  In that case, we assumed that for a small interval, ( , ]t t t+ Δ , the probability of 
observing a spike is some probability p  that is directly proportional to the size of the 
interval, , the probability of observing more than one spike in this interval is negligibly 
small, and the probability of observing no spikes is approximately 1

tΔ
p− .  This process is 

stationary because the probability of a single spike is a function of the size of the 
interval, but not of the time .   t
 
In order to construct a binary process that is not stationary, we simply need to make the 
probability of firing a spike in this interval depend on .  In particular, we define a 

Poisson rate function, 

t

( )tλ , such that 
( )( , ]

0

Pr 1
( ) lim t t t

t

N
t

t
λ +Δ

Δ →

Δ =
=

Δ
.  This rate function 

defines the instantaneous probability of observing a spike at each point in time.  We can 
now define an inhomogeneous Poisson function as the limit of a Bernoulli process, as 
we did in our second definition for a simple Poisson process. 
 
Definition: Partition the observation interval, , into regular bins of size , and let 

 be an independent Bernoulli[
(0, ]T tΔ

kNΔ ]kp  process with ( )k kp t tλ= ⋅Δ .  Then in the limit as 
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0tΔ → ,  will approach the counting process for an inhomogeneous Poisson 
process with rate function 

( )N t
( )tλ . 

 
Since this definition characterizes the probability of firing a spike in any small bin, it also 
implicitly defines the probability distribution of the number of spikes in any interval.  In 
particular, it is not difficult to show that the number of spikes in any interval from time  

to time b  has a Poisson distribution with parameter .  A full proof is given in the 

appendix (Section AI), but the intuition behind this result is easily explained.  From the 
above definition, we know that the probability distribution of each small increment is 
approximately Bernoulli, and as we discussed with simple Poisson processes, Bernoulli 
and Poisson distributions are nearly identical for small increments.  Therefore, each 
small increment  is approximately Poisson with parameter 

a
a

( )
b

t dtλ∫

kNΔ ( )kt tλ Δ .  Previously, we 
used the result in the appendix (Section AI) that the sum of Poisson random variables is 
itself Poisson whose parameter is the sum of those of the original Poisson variables.  
Therefore, the number of events in any large interval will have a Poisson distribution with 
a parameter .  In the limit as ( )ktλ Δ∑ t 0tΔ → , the sum in the parameter becomes an 
integral, and all of the approximations become exact.  In other words, each infinitesimal 
increment has a Poisson distribution, which ensures that any larger increment must also 
be Poisson. 
 
Since the discrete increments in the above definition of the inhomogeneous Poisson 
process are independent, it follows that the sums of two disjoint groups of those 
increments will also be independent.  Therefore, we expect non-overlapping intervals to 
have independent Poisson increments.  This leads to an alternate definition of the 
inhomogeneous Poisson process: 
 
Definition:  An inhomogeneous Poisson process with rate function ( )tλ  is a point 
process satisfying the following conditions: 

a) For any interval, , ( )start end,t t end

start end
start

( , ) ~ Pois ( )
t

t t t
N tλ dt⎡ ⎤Δ ⎢ ⎥⎣ ⎦∫ . 

b) For any non-overlapping intervals, ( )start end,t t  and ( )start end,s s ,  and 

 are independent.   
( start end,t tNΔ )

)( start end,s sNΔ
 
The reason this process is called an inhomogeneous Poisson process is clear.  It still 
has Poisson increments, but each increment has its own mean, determined by the value 
of the rate function over the interval in question.  This process no longer possesses the 
independent increments property, but still has independent increments.  As a result, this 
process also still has the memoryless property, by which the probability of spiking at any 
instant does not depend on occurrences or timing of past spikes.  
 
It is also possible to define an inhomogeneous Poisson process in terms of its ISI 
distribution.  Since this distribution is nonstationary, it is useful to define it in terms of the 
distribution of the next spike time given the most recent spike time.  Clearly, if the time of 
the last spike is known, then the distribution of the waiting time is equal to that of the 
difference between the next spike time and the previous one. 
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We can compute the distribution of the time to the next spike given the previous spike 
time by noting that the event that the time until the next spike is greater than some time 

, i.e. {is }1 1|i i i iS s S s− −> = , is equivalent to the event that no spikes occur in the interval 

.  Therefore, 1( ,i is s− ] ( ) ( ) { }1
1

1 1 ( , ]Pr | Pr 0 exp ( )i

i i
i

s

i i i i s s s
S s S s N t dtλ

−
−

− −> = = Δ = = −∫ , and 

the cumulative distribution function (CDF) is ( ) { }
1

1 1Pr | 1 exp ( )i

i

s

i i i i s
S s S s t dtλ

−
− −≤ = = − −∫ .  

The probability density function of the next spike time is given by derivative of CDF, 

( ) { }
1

1 1| 1 exp i

i
i

s

S i i i s

d ( )f s S s t dt
dt

λ
−

− −
⎛ ⎞= = − −⎜ ⎟
⎝ ⎠∫ , which implies,   

 

( ) { }
1

1 1| ( ) exp i

i
i

s

S i i i i s
( )f s S s s t dtλ λ

−
− −= = −∫  

 
As established by the above definitions, this density is independent of any spiking 
activity that occurs outside of the interval . 1( ,i is s− ]
 
 
V. Renewal processes are simple point processes in which the inter-spike 
intervals are independent. 
 
The simple Poisson process developed above assumed that the point process 
increments were both stationary and independent of past spiking history.  Since simple 
Poisson processes cannot describe spiking activity with properties that change over 
time, we generalized to inhomogeneous Poisson processes by eliminating the 
stationarity assumption, but preserving the independence assumption.  Therefore, both 
classes of Poisson processes have no history dependence.  However, as discussed in 
section III, most systems that produce point process data have physical mechanisms 
that lead to history dependent spiking, which cannot be explained with Poisson models.  
Therefore, it is necessary to further generalize our point process models by removing the 
independence assumption to capture observed history dependent structure.  
 
The simplest type of point process with nontrivial history dependence is the renewal 
process.  A renewal process is a point process for which the probability of firing a spike 
at any point in time can depend on the occurrence time of the last spike, but not on any 
spikes before then.  It is therefore typical to express the probability models for renewal 
processes in terms of the inter-spike interval distributions.  Specifically, renewal 
processes have independent identically distributed inter-spike intervals.  We already 
showed in section IV that simple Poisson processes have i.i.d. exponential inter-spike 
intervals.  Therefore, renewal processes are a generalization of the simple Poisson 
process allowing other ISI distributions beyond the exponential.  It is important to 
understand that for renewal processes, each inter-spike interval is independent of every 
other ISI, but the probability of a spike at any point in time can still depends on past 
spike times. 
 
A renewal model is specified by writing down a distribution function for the inter-spike 
intervals.  Typically, this takes the form of a probability density function, ( )

iX if x , where 
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ix  can take values in [0 .  In principle, we can define a renewal process using any 
probability distribution that takes on values between zero and infinity, however there are 
some classes of probability models that are more commonly used either because of their 
distributional properties, or because of some physical or physiological features of the 
underlying process.   

, )∞

 
For example, the Gamma distribution is a common basis for renewal models that is 
defined by two values, a mean and a shape parameter.  The shape parameter gives it 
the flexibility to capture a number of characteristics that are often observed in point 
process data (Fig 3a).  If this shape parameter is equal to one, then the Gamma 
distribution simplifies to an exponential, which as we have shown, is the ISI distribution 
of a simple Poisson process.  Therefore, renewal models based on the Gamma 
distribution generalize simple Poisson processes, and can be used to address questions 
about whether data is actually Poisson.  If the shape parameter is less than one, then 
the density drops off faster than an exponential.  This can be useful in describing point 
processes that fire in rapid bursts.  If the shape parameter is greater than one, then the 
Gamma density function takes on the value zero at 0ix = , rises to a maximum value at 
some positive value of ix , and then falls back to zero.  This can be useful in describing 
refractoriness in point processes, that is the property that after firing a spike, the 
process is less likely to fire again immediately afterward.  Therefore, this simple class of 
distributions with only two parameters is capable of capturing a number of different types 
of history dependent structure. 
 

 
Figure 6. A) Examples of Gamma density functions with fixed mean and different shape parameters. 
B) Examples of inverse Gaussian density functions with fixed mean and different shape parameters. 

 
For neural spiking data, perhaps a more appropriate distribution for renewal models is 
the inverse Gaussian.  While the Gamma distribution is simple and flexible, it doesn’t 
directly relate to the physiological properties of neurons.  On the other hand, the inverse 
Gaussian renewal model is motivated by simple dynamical models of the mechanisms 
underlying the generation of action potentials.  Specifically, if we construct a simple 
integrate-and-fire model for the neuron, wherein the membrane potential at any point in 
time is the integrated value of random synaptic inputs from other neurons and a spike is 
fired once that potential reaches a fixed threshold, then we can compute the inter-spike 
distribution based on the distribution of the inputs (Fig 7).  If the input distribution is taken 
to be a simple Gaussian white noise process, then from section 2.6.5, we see that the 
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spiking activity turns out to be an Inverse Gaussian renewal process (Tuckwell, 1988).  
Like the Gamma distribution, the inverse Gaussian distribution is defined by two 
parameters, a mean and a shape parameter.  For all parameter values, the inverse 
Gaussian density function is zero at 0ix = , rises to a maximum value at some positive 

ix , and decays back to zero (Fig 6b).  The shape parameter determines how quickly the 
density rises and falls, and determines features of the model such as its tendency to fire 
in rapid bursts and its refractoriness. 
 

 
Figure 7. Example of an integrate-and-fire neuron.  The membrane integrates random Gaussian 
inputs until it reaches a threshold potential, at which point it fires a spike and resets to the resting 
potential. 

 
When discussing whether a process is stationary, it is important to specify to which 
collection of random variables one is referring.  For simple Poisson processes, the 
distributions of both the point process increments and the inter-spike intervals are 
stationary.  For renewal processes the increments are typically nonstationary and 
depend on the time of the last spike, but the ISIs are stationary.  It is also possible to 
construct inhomogeneous inter-spike interval probability models, with nonstationary ISIs.  
For Poisson processes, we made the process inhomogeneous by replacing the constant 
rate parameter with a time varying rate function.  For general renewal processes, we can 
create an inhomogeneous process by performing a time rescaling calculation (Barbieri et 
al., 2001).  As we shall see, inhomogeneous point process models are useful for 
describing data from stimulus-response experiments. 
 
 
VI. The conditional intensity function specifies the joint probability density of 
spike times for a general point process. 
 
Many systems that produce point process data have history dependent structure that 
makes Poisson and renewal models inappropriate.  It is useful to define a unified 
mathematical construct that will allow us to describe any physically relevant point 
process.  Previously, we described the structure of an inhomogeneous Poisson process 
by defining a rate function that characterized the instantaneous probability of firing a 
spike at each instant in time.  Similarly, any point process can be completely 
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characterized by its conditional intensity function, ( | )tt Hλ  (Daley and Vere-Jones, 
2003), defined as  
 

  ( , ]

0

Pr( 1| )
( | ) lim ,t t t t

t t

N H
t H

t
λ +Δ

Δ →

Δ =
=

Δ
 (1) 

 
where  is the instantaneous conditional probability of a spike and 

 is the history of the spiking activity up to time   Since the probability of a spike in 
any interval must be non-negative, so too must be the conditional intensity function.  
This conditional intensity function expresses the instantaneous firing probability and 
implicitly defines a complete probability model for the point process.  It will therefore 
serve as the fundamental building block for constructing the likelihoods and probability 
distributions needed for point process data analysis. 

( , ]Pr( 1| )t t t tN +ΔΔ = H

t

tH .t

 
By construction, the conditional intensity is a history-dependent rate function because it 
defines a probability per unit time. We will see below that it generalizes the concept of a 
rate function for a Poisson process.  It is important to realize that the conditional intensity 
can be a stochastic process itself, since it can depend on spiking history, which is 
stochastic.  A conditional intensity functions that depends on history or on any other 
stochastic process is often called a conditional intensity process, and the resulting 
point process is called a doubly stochastic point process. 
 
Additional important intuition behind the conditional intensity function can be gained by 
choosing  to be a small time interval and re-expressing Eq. 1 as tΔ
 
  ( , ]Pr( 1| ) ( | )t t t t tN H t Hλ+ΔΔ = ≈ Δ . (2) 
 
Equation 2 states that the conditional intensity function multiplied by  gives the 
probability of a spike event in a small time interval 

tΔ
tΔ .  Because ( | )tt Hλ  is defined in 

continuous time, we see that it defines the probability of a spike event in any small time 
interval.   
 
As discussed in section IV, we typically assume that the point processes we model are 
orderly.  That is, that for a sufficiently small interval, the probability of firing more than 
one spike in negligibly small compared to the probability of firing one spike.  
Mathematically, this is equivalent to the statement that  
 

  ( , ]

0

Pr( 1| )
lim 0t t t t

t

N H
t

+Δ

Δ →

Δ >
=

Δ
. (3) 

 
This assumption is biophysically plausible for a point process model of a neuron 
because neurons have an absolute refractory period (Kandel, Jessel and Swartz, 200_). 
For most neurons the probability of firing more than one spike is negligibly small for 

msec.  1 tΔ <
 
Together Eqs. 2 and 3 imply that given the conditional intensity function, either zero or 
one spike can possibly fire in a small time interval.  Therefore, the probability of a spike 
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occurring can be analyzed as a Bernoulli or coin flipping process in which for any small 
interval  the probability of a spike is tΔ
 
  Pr(spike in [ , ) | ) ( | )tt t t H t H ttλ+ Δ ≈ Δ

t

 (4) 
 
and the probability of no spike is 
 
  Pr(no spike in [ , ) | ) 1 ( | )tt t t H t H tλ+ Δ ≈ − Δ . (5) 
 
This is one sense in which the conditional intensity function characterizes a spike train.  
In section IV, we showed that Poisson processes could be thought of as a local Bernoulli 
process with a spiking probability determined by the Poisson rate function.  Equations 4 
and 5 generalize this result and show that for orderly point process, in a small time 
interval, given the history up to time , spike events are described by a local Bernoulli 
process.  This is the reason that point processes are conceptually simple to understand.  
At each instant, you either observe a spike or you don’t observe a spike.  The probability 
of observing a spike can be a function of past spiking activity, as well as other stochastic 
or time varying signals, and is characterized by the conditional intensity. 

t

 
In the appendix (Section AIII), we use this Bernoulli approximation for the increments 
and take the limit as  to show that the probability density for the time to the next 
spike given the spiking history is 

0tΔ →

 

  ( ) { }1
1

| ( | ) exp ( |
i i

i

s

S s s ts
)f s H s H t H dtλ λ

−
−

= −∫ , (6) 

 
where  is the observed  spike time and 1is −

th( 1)i −
1is

H
−

 is the observed spiking history 

up until and including time .  This density function also defines the ISI distribution, 
since the event that the next spike time occurs at a time  given the spiking history up 
until the last spike time, 

1is −

s

1is
H

−
, is equivalent to the event that the  ISI is equal to 

.   

thi

1is s −−
 
One way to interpret Equation 6 is to look at the two terms in the product on the right 
hand side separately.  In the derivation of equation 6 in the appendix (Section AIII), we 

show that the second term, { }
1

exp ( | )
i

s

ts
t H dtλ

−

−∫  gives the probability of firing no spikes 

between times  and .  The first term, 1is − s ( | )ss Hλ , characterizes the instantaneous 
distribution of firing a spike at time .  Therefore the product in Equation 6 describes the 
probability of not firing any spikes between 

s
1is −  and , and then firing at exactly time . s s

 
We can take this argument one step further to show that in an observation interval 

, the joint probability density of observing a spike train with spikes occurring at the 
times  is 
(0, ]T

1 (,..., N Ts s )
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  ( ) ( ) { }1 ( )

( )

,..., 1 ( ) 0
1

,..., ( | ) exp ( | )
N T i

N T T

S S N T i s t
i

f s s s H t H dtλ λ
=

= −∏ ∫ , (7) 

 
where  is the total number of spikes observed in the interval , and  is 
the time of the last observed spike.  The complete derivation of this result is shown in the 
appendix (Section AIII).  As before, we can interpret Equation 7 by breaking the product 

on the right hand side into two terms.  The  term characterizes the 

distribution of firing at exactly the observed spike times, .  The 

( )N T (0, ]T ( )N TS

(
( )

1

( | )
i

N T

i s
i

s Hλ
=
∏ )

( )1,..., N Ts s

{ }0
exp ( | )

T

tt H dtλ−∫  term gives the probability of not firing any other spikes in the 

observation interval .  Therefore, Equation 7 describes the distribution of firing only 
at the observed spike times, and nowhere else.  This joint probability density fully 
characterizes a spike train, and will be the backbone for most of our statistical analyses.  
Thus it is clear that once we define a conditional intensity function for a point process, 
we can compute the probability distributions necessary for performing statistical 
inference. 

(0, ]T

 
The homogeneous and inhomogeneous Poisson processes discussed in section IV are 
specific cases of general point processes that are defined by specifying a particular 
structure on the conditional intensity function.  For a homogeneous Poisson process, the 
probability distribution of firing is independent of time and history.  In other words, a 
homogeneous Poisson process has a constant conditional intensity that is equal to the 
Poisson parameter,  
 
  0( | )tt Hλ λ= . (8)   
 
For an inhomogeneous Poisson process, the probability of firing is given by a time-
dependent rate function but is still independent of past firing history.  Therefore, an 
inhomogeneous Poisson process has a conditional intensity that is a function of time but 
not of history,  
 
  ( | ) ( )tt H tλ λ= . (9) 
 
Thus, the conditional intensity function can be thought of as a history-dependent 
generalization of the Poisson rate function.  
 
Because the spiking propensity of a neuron depends critically on history defined as the 
recent state of its local milieu, including its own recent spiking activity, that of the other 
neurons in its network and external stimuli, certainly simple Poisson models should not 
be the first models considered for analyzing neural spike trains. Inhomogeneous Poisson 
models that capture the time-dependent nature of a stimulus may be very useful for 
relating a neuron’s spiking activity (Brown et al 1998, Brown et al. 2001, Barbieri et al. 
2004; Barbieri and Brown 2006) even though it does not consider the intrinsic dynamics 
of the neuron and the network dynamics, if multiple neurons are recorded 
simultaneously.  
 

 18



Although the conditional intensity function is defined in continuous time, it is useful to 
analyze it in discrete time.  In section III, we defined a discrete-time partition of an 
observation interval  into  subintervals each of length (0, ]T n Tt nΔ = .  We chose n  

large so that by the orderliness assumption (Eq. 3) there is at most one spike in any 
subinterval, and defined , for kNΔ 1,...,k n= , to be the increment process, where 

 if there is a spike in [ ,1kNΔ = ( 1)k k )Δ + Δ  and  otherwise.  Similarly, we can define 
the conditional intensity for each interval to be its value at the beginning of the interval, 

0

( | k tk t H )λ ΔΔ .  To simplify notation, we denote the discretized conditional intensity 
function as  
 
  ( |k k t H )k tλ λ Δ= Δ . (10) 
 
For a fine discretization, the probability of observing a spike is approximately given by, 

[ ]Pr 1kN λΔ = ≈ Δk t , the probability of not observing a spike is approximately 

[ ]Pr 0 1kN k tλΔ = ≈ − Δ , and the probability of observing more than one spike is 
negligibly small. 
 
 
A point process model expresses the conditional intensity as a function of time, 
history, and other variables.  
 
Equation 1 defines the conditional intensity function in terms of the instantaneous firing 
probability of the point process.  However, we do not use this equation to get the 
conditional intensity, in general, since this probability distribution is typically unknown a 
priori.  In constructing point process models, we are trying to define those exact 
probabilities.  Therefore, rather than constructing the conditional intensity based on the 
firing probability, we typically write down a model for the conditional intensity, which 
implicitly defines the probability model for any spiking data.  Thus, a conditional intensity 
model provides a way to express the probability model for a spiking process. 
 
The first step in writing down a conditional intensity model for a point process is 
determining what factors, or covariates, can influence the occurrence times of that 
process.  In section II, we showed that that spiking history often plays an important role 
in determining when the next spike will occur.  This is one class of covariates that should 
be considered for most point process models.  If the point process being modeled is one 
of a larger collection of point processes that interact with each other, it may be useful to 
consider the firing histories of the other point processes in the model as well.  For many 
experiments dealing with spiking data, there are other signals, or external covariates, 
besides history terms that affect the point process.  These external covariates are often 
recorded simultaneously with the point process.  For example, in any stimulus-response 
experiment, it is expected that some function of the stimulus affects the firing probability.  
Once we establish which covariates can influence the spike times of the point process, 
we next define a model for the conditional intensity as a function of those covariates.  
For example, if we have a point process with a firing probability that changes as a 
function of time, as a function of some external covariate, ( )x t , and is history 
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dependent, a conditional intensity model for that process is an expression of the form 
( | ) ( , ( ), )t tt H g t x t Hλ = , where  is any nonnegative function. ( , ( ), )tg t x t H

 
For neural systems, a neuron’s own spiking history, as well as the firing activity of other 
neurons can certainly influence the timing of future spikes.  Additionally, neurons are 
able to represent information about biological stimuli as well as behavioral and motor 
outputs in the firing activity of individual neurons.  The functional relation between a 
neuron’s spiking activity and these biological and behavioral signals is often called the 
neuron’s receptive field.  In the examples below, we look at some simple models for 
specific neural receptive fields. 
 
Example 4: Simple History Dependent Spiking Model 
 
To illustrate the effect of spiking history on current spiking probability we define a 
conditional intensity model that is solely a function of recent past spiking activity, 
 

  . (11) 
4

0
1

exp{ }k
j

Nλ α α −
=

= + Δ∑ j k j

 
If msec, then the spiking probability, 1tΔ = k tλ Δ , depends on the spike occurrences in 
the last 4 msec.  This model has 4 covariates, 1kN −Δ , 2kN −Δ , 3kN −Δ , and , and 
five parameters, 

4kN −Δ

0α , 1α , 2α , 3α , and 4α .  If we take 0 log(10)α = , 1 100α = − , 2 2α = − , 

3 0.5α = − , and 4 0.1α = −  we see that these values of the coefficients allow a spike train 
process with an absolute and relative refractory period.  If at any point in time, no spikes 
have occurred in the past 4 msec, then the firing intensity is exp{log(10)} 10kλ = =  
spikes per second.  If a spike has occurred in the past millisecond, then the firing 
intensity drops to around exp{ 97.7}kλ = − , which is negligibly small.  In other words, it is 
virtually impossible for this process to fire a spike within one millisecond of a previous 
spike.  If a spike occurred 2 msec previously, and no other spike is present in the 4 msec 
history, then the firing intensity is exp{log(10) 2} 1.35kλ = − ≈  spikes per second.  This is 
a substantial drop from the baseline firing rate of 10 spikes per second, but not negligibly 
small as it was immediately after a spike.  As a spike recedes into the past, its inhibitory 
effect on the current spiking activity diminishes.  We say that this neuron has an 
absolute refractory period of 1 msec, when it cannot fire, and a relative refractory period 
of 4 msec, when the probability of firing is decreased.  Under this model, if we had one 
spike 2 msec in the past and another spike 4 msec in the past, then the inhibitory effects 
of each past spike combine and exp{log(10) 2 .1} 1.22kλ = − − ≈  spikes per second, less 
than the intensity caused by either past spike individually.  This simple example shows 
that the precise timing of the previous spiking activity can alter current spiking propensity 
and that this can be modeled with a conditional intensity function. 
 
Example 1. (cont’d) Conditional Intensity Model for a Retinal Neuron Under Constant 
Light and Environmental Conditions 
 
Figure 2, shows the spontaneous spiking activity of a retinal neuron grown in culture and 
maintained under constant light and environmental conditions.  This preparation ensures 

 20



that there is no explicit stimulus present, and therefore the only covariate upon which to 
model the activity of this neuron is its own firing history.   
 
We can construct a history-dependent conditional intensity model similar to Eq. 11, but 
with more parameters stretching back further into the neuron’s past history.  Examining 
the ISI histogram in Fig. 2b, we see interesting structure going back as far as 120 msec.  
Being conservative, we therefore construct a conditional intensity of the form 
 

  . (12) 
120

0
1

exp{ }k
j

Nλ α α −
=

= + Δ∑ j k j

 
This model has 120 history related covariates, each indicating whether or not a spike 
was fired in a 1 ms interval at a different time lag, and 121 parameters, giving the 
background intensity in the absence of past spiking and the modulation due to each of 
these covariates, respectively. 
 
If we plug in the model from Eq 12 and the data shown in Figure 2c into joint spiking 
density in Eq. 7, we get an expression for the likelihood of the observed spiking as a 
function of the parameters.  We will describe later how to use this likelihood to construct 
estimators and confidence bounds for the parameters that generated the data.  In this 
case, the estimate for 0ˆ 3.8α = , so that if there is no spikes is the past 120 msec, the 
conditional intensity is exp(3.8) 45kλ = =  spikes per second.  Figure 8 shows estimates 
and confidence intervals for exp{ }iα  for each of the remaining model parameters.  The 
parameters related to 0-2 msec after a spike are large negative numbers, so that 
exp{ }iα  is close to zero, leading to a refractory period when the neuron is much less 
likely to fire immediately after another spike.  However, the parameters related to 4-13 
ms after a spike are significantly positive leading to an increase in the firing probability.  
For example, if the only spike in the 120 msec history occurred 6 msec in the past, then 
the background conditional intensity of 45 spikes per seconds is multiplied by a factor of 
about 3.1, leading to a conditional intensity of 140 spikes per second.  This phenomenon 
accounts for the rapid bursts of spikes observed in the data.  There is perhaps another 
region of increased firing probability around 100 ms after a spike.   
 
 

 
Figure 8. Parameter estimates and confidence intervals for history dependent retinal conditional 
intensity model. 
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Many of the remaining parameters are close to zero, and hence exp{ }iα  is close to one, 
indicating that the corresponding history term has no effect on the current spiking 
probability.  Later, we will see that since many of these parameters do not lead to 
significant modulation of the firing activity, it is possible to construct a simpler model with 
considerably fewer parameters that describes the spiking activity as well or better than 
this one. 
 
Example 2. (cont’d) Conditional Intensity Model for an M1 Neuron 
 
As discussed earlier, primate motor cortical neurons have velocity modulated cosine 
tuned receptive fields.  Figure 9A shows an example of the spiking activity of a neuron in 
primate motor cortex as a function of hand speed and direction using an occupancy 
normalized histogram.  The neuron fires most intensely when the hand moves in a 
direction about 1.6 radians from east and increases as a function of hand speed. 
    

 
Figure 9.  Example of motor cortical neural activity during a two-dimensional reaching task as a 
function of hand direction and speed.  A) Empirical visualization of motor cortical spiking activity 
via occupancy normalized histogram.  B) Poisson model for this spiking activity, with parameters fit 
by maximum likelihood.  

 
Specifying a point process model for this neuron comes down to writing an expression 
for its conditional intensity in terms of the direction and speed of the hand movement.  
One possible model form is  
 
  ( ){ }p( ) exp ( 150ms) cos ( 150ms)t v t tλ α β φ φ= + + + −  (13) 

 
where the model covariates are  and ( )v t ( )tφ , the speed and direction of the intended 
hand movement, and the 150 ms lag relates the current spiking activity to movements 
that will occur 150 ms later.  The parameters of this model are ( , , )pα β φ , where expα  

is the baseline firing rate, β  is the depth of modulation, and pφ  is the preferred direction 
of the neuron.   
 
If we observe a spike train from this neuron and the corresponding subsequent hand 
movement, we can plug the data and the model of Equation 13 into the joint probability 
in Equation 7 to get an expression for the likelihood of the observed spiking as a function 
of the parameters.  We can then find the parameters that maximize this likelihood 
function.  Figure 9B illustrates the maximum likelihood model fit for this neuron.  The 
preferred direction and degree of modulation as a function of speed are in good 
agreement with those observed in the occupancy normalized histogram. 
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The model of Eq 13 is an inhomogeneous Poisson model, since the conditional intensity 
does not depend on the past spiking history.  This is unrealistic, since these neurons 
have been shown to have history dependent structure such as refractoriness and 
bursting behavior.  One step toward making this model more realistic is to add a 
separate history component along the lines of the previous examples, to obtain a model 
of the form, 
 

  ( )
120

p
1

( ) exp ( 150ms) cos ( 150ms) j k j
j

t v t tλ α β φ φ α −
=

⎧ ⎫
= + + + − + Δ⎨ ⎬

⎩ ⎭
∑ N  (14) 

 
where  determines how far back in the past the spiking history can affect the current 
spiking activity.   

n

 
Example 3. (Cont’d) Conditional Intensity Model for a Hippocampal Place Cell 
 
Hippocampal place cells have firing patterns that relate to an animal’s location within an 
environment.  Therefore a place field model should describe the conditional intensity as 
a function of the animal’s location at each point in time.  Figure 10A again shows the 
spiking activity of a place cell that fires maximally at a point southwest of the center of a 
circular environment.   
 

 
Figure 10.  Spiking activity of a rat Hippocampal place cell during a free-foraging task in a circular 
environment. A) Visualization of animal’s path (blue) and locations of spikes (red).  B) Gaussian 
place field model for this neuron with parameters fit by maximum likelihood.    

 
Place fields of this type have been successfully modeled with conditional intensity 
models that have a Gaussian shape with respect to position.  For example, we can 
construct a conditional intensity model of the form,  
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μσ σ

−⎧ ⎫−⎛ ⎞ ⎛ ⎞⎪ ⎪= − − − ⎜ ⎟⎨ ⎬⎜ ⎟⎜ ⎟ −⎝ ⎠⎪ ⎪⎝ ⎠⎩ ⎭
.  (15) 

 
The covariates for this model are ( )x t  and ( )y t , the animal’s x and y-position.  The 
model parameters are 2 2( , , , , , )x y x y xyα μ μ σ σ σ , where ( , )x yμ μ  is the center of the place 

field, expα  is the maximum firing intensity at that point, and 2
xσ , 2

yσ , and xyσ  express 
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how the intensity drops off away from the center.  It is important to note that it is the 
shape of the place field that is Gaussian, not the distribution of the spiking activity, which 
is a point process.   
 
If we observe the animal’s location and the spiking activity of a Hippocampal place field, 
we can plug the conditional intensity model in Equation 15 and the observed spikes into 
the joint probability in Equation 7, to get the data likelihood as a function of the model 
parameters.  We can then find the parameters that maximize this likelihood function.  
The maximum likelihood fit for the place field shown in Figure 10 is illustrated in panel B.  
As in the previous example, this is an inhomogeneous Poisson model that captures the 
spatially specific structure in the firing activity but not the history dependent structure. 
Later, we will discuss methods to measure goodness-of-fit between a conditional 
intensity model and spiking data, and construct improved models. 
 
 
Defining the Conditional Intensity Function Defines the Inter-spike Interval 
Distribution and Vice-Versa 
 
Equation 6 shows that given the conditional intensity function for a point process, it is 
simple to compute the probability density of the next spike time, given the history up until 
the previous spike time, which is equivalent to the ISI density function.  Here we show 
that given the ISI density it is also straightforward to compute the conditional intensity 
function.  Therefore, there is a one-to-one relationship between the conditional intensity 
function and the ISI distribution, and it is always possible to obtain the one from the 
other. 
 
The key insight to establishing this relationship comes from the fact that the probability of 
firing no spikes in an interval can be easily computed from either of the conditional 
intensity or ISI density functions.  In the derivation of Equation 6 in the appendix (Section 
AIII), we showed that  
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This is in fact the second term that appears in the product on the right hand side of 
Equation 6.  We could instead compute this probability from the ISI density by noting that 
the cumulative distribution function for the ISI, which defines the probability of the ISI 
being less than some value , or equivalently the probability of firing at least one spike 
between the last spike time, , and time , is just the integral of the density function, 

.  Therefore, the probability of firing no spikes in this 
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Combining Equations (16) and (17), we see that 
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the right hand side of Equation 6 to get ( ) ( )1 1
1
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Solving for ( | )ss Hλ  we obtain an expression for the conditional intensity function as a 
function of the ISI density, 
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Therefore, we can define a point process model by specifying a functional relationship 
between the covariates that influence spiking activity and either the conditional intensity, 
leading to a model of the form ( | ) ( , ( ), )tt H g t x t Htλ = , or the ISI density, leading to a 
model of the form, 

1 1
( | ) ( , ( ), )

i i iS s sf s H h t x t H
− −

= .  Here,  can be any 

nonnegative function, but  must be a density function and therefore must 
both be nonnegative and its integral over all future time must be equal to one.  Once one 
of these model forms is specified, any probability distributions associated with the point 
process can be computed.  In practice, although it is possible to define any point process 
equivalently in terms of either a conditional intensity model or an ISI model, conditional 
intensity models are more commonly used when describing history dependence that 
goes beyond a simple renewal process. 

( , ( ), )tg t x t H

1
( , ( ), )

is
h t x t H

−

 
We can gain some intuition into Equation 18 from the related field of survival analysis.  In 
survival analysis, the objective is to estimate the rate of deaths or failures at a time , 
given that a patient survived or that a machine component worked up to that time 
(Kalbfleisch and Prentice, 1981).  This conditional failure rate is called the hazard 
function.  The numerator on the right hand side of equation 18 is the probability density 
of an ISI of length , that is the probability of no spike from time  up to time , 
and then a spike at exactly time .  As shown by Equation 17, the denominator on the 
right hand of Equation 18 is simply the probability of no spike from time  up to time .  
Therefore, we can rewrite Equation 18 as 
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which means that ( | ) (spike at | no spike in ( , ])ss H f s s siλ = , by the definition of a 
conditional probability.  Therefore, we see that the conditional intensity function is 
equivalent to the hazard function. 
  
Example 1. (cont’d) ISI Probability Density for a Retinal Neuron 
 
Equation 12 gives a conditional intensity model for the spontaneous spiking activity of a 
retinal neuron held under constant light and environmental conditions.  At each spike 
time, we can plug this model into Eq. 18 to compute the ISI probability density for the 
time to the next spike.  This will differ at each spike time, due to differences in past 
history.  However, we can examine the effect of the most recent spike on its own by 
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taking the ISI density at each spike time, and average them together to eliminate the 
effect of all spikes except the most recent one.  Figure 11 shows the result of this 
analysis, compared to the observed ISI histogram and to some simple renewal models.   
 

 
Figure 11. ISI histogram and model probability densities for exponential, gamma, and inverse 
Gaussian renewal models compared to conditional intensity model of Eq. 12.  

  
The exponential and gamma renewal models both overestimates the number of very 
short ISIs (0-4 msec), and all three renewal models underestimate the number of ISIs 
between 5-10 msec and overestimate the number of ISIs between 10-60 msec.  In 
contrast, the conditional intensity model of Eq. 12 accurately predicts the number of ISIs 
in all of these periods. 
 
 
VII. A general temporal point process may be transformed to a constant-intensity 
Poisson process by rescaling time. 
 
We can use the joint probability density function in Equation 7 to fit models by 
constructing data likelihoods and estimating parameter values and confidence intervals.  
However, once we finish the model-fitting component of our data analysis, we still need 
to develop methods to use those fit models to make inferences about the data and 
perform statistical goodness-of-fit analyses.  In order to accomplish this, we need to 
construct statistics, which are functions of our point process data, whose distributions we 
can compute. 
 
Typically, statistics are built from data samples that are independent and identically 
distributed.  In that case, it is often possible to compute or approximate the distributions 
of these statistics, which because of the Central Limit Theorem tend to have Gaussian 
distributions.  However, general point processes have complicated, nonstationary, 
history dependent probability models.  Common statistics constructed directly from point 
process data often have distributions that are highly non-Gaussian, and cannot be 
computed analytically.  In order to construct useful point process statistics, we need a 
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procedure to transform our point process data such that they become samples from i.i.d. 
random variables.  One approach to this is given by the time rescaling theorem. 
 
Time Rescaling Theorem. Given a point process with conditional intensity function 

( | )tt Hλ  and with occurrence times 1 2 ( )0 ,..., N Ts s s T< < < ≤ , define  

  , and 
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1 0
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Then these  are independent, exponential random variables with rate parameter 1. jz
 
This result comes about in a surprisingly simple manner, using the standard change-of-
variables formula from probability theory.  It can be seen intuitively for a single  by 
combining equations 16, 17, and 20 to show that 

jz
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S s ts
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= − − = − −∫ , which is the CDF of an exponential 

random variable with rate parameter equal to 1.  The complete proof is provided in the 
appendix (Section AIV). 
 
This result is called the time rescaling theorem because we can think of the 
transformation as stretching and shrinking the time axis based on the value of the 
conditional intensity function.  If ( | )tt Hλ  is constant and equal to one everywhere, then 
this is a simple Poisson process with independent, exponential ISIs, and time does not 
need to be rescaled.  Anytime when ( | )tt Hλ  is less than one, the  accumulate 
slowly and represent a shrinking of time, so that distant spike times are brought closer 
together.  Likewise, anytime when 

'sjz

( | )tt Hλ  is greater than one, the  accumulate 
more rapidly and represent a stretching of time, so that nearby spikes are drawn further 
apart. 

'sjz

 
An illustration of the time rescaling theorem is shown in Figure 12.  The upper-panel 
shows a Poisson rate function ( )tλ  in time and a set of spike times.  The process spikes 
when ( )tλ  is high and doesn’t when it is close to zero.  The lower panel shows the 

integrated rate .  The original ISIs are nonstationary and very irregular due to 

the time varying rate function.   and  are long because they contain significant 
portions where the rate function is close to zero, while  is short because the intensity 
is high in this interval.  If we reflect the original spike times through this function, then the 
rescaled spike times are more regular, and only show the degree of variability expected 
from i.i.d. exponential samples.  

0
( )

t
u duλ∫

1w 3w

2w
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Figure 12.  Example of time-rescaling for an inhomogeneous Poisson process.   

 
In terms of statistical analysis, this result means that we do not need to compute the 
distributions associated with functions of dependent, nonstationary data.  Instead, we 
can use a fit conditional intensity model to transform the data into i.i.d. samples, and 
then work with statistics of this transformed data, which have relatively simple 
distributions.  For example, a statistic based on the mean of the observed ISIs will 
generally not have an analytically tractable distribution, but a statistic based on the mean 
of the rescaled ISIs will be equivalent to the mean of exponentials, which will tend to a 
Gaussian distribution by the Central Limit Theorem.  Furthermore, we can transform the 
rescaled ISIs to any other i.i.d. random variables using an additional change-of-
variables.  In sections VIII and IX, we will use the time-rescaling theorem to visualize 
goodness-of-fit between a model and spiking data and to simulate spiking activity.  In 
later chapters, we will discuss in detail how time rescaling is used to construct 
quantitative measures of goodness-of-fit. 
 
As a technical point, it is important to note that we have not eliminated history-
dependence by transforming the process.  The spiking history is present in the 
realization of the conditional intensity process that is used to perform the time-rescaling 
calculation.  Intuitively, we have sequestered the time-varying and history-dependent 
structure of the point process into the conditional intensity and the rescaling procedure.  
If the conditional intensity model accurately captures the structure of the history 
dependence and nonstationarity, then the rescaled  will be independent and follow a 
simple exponential distribution. 

'sjz
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Example 1 (cont’d). Transformed ISI’s of a Retinal Neuron 
 
We can rescale the ISIs of the spontaneous firing activity of the retinal neuron under 
constant light and environmental conditions using the conditional intensity model of Eq. 
12.  Figure 13A shows a histogram of the original ISIs for this data.  The smallest bin (0-
2 ms) is empty due to the refractory period of the neuron.  We can also observe two 
distinct peaks at around 10 and 100 msec respectively.  It is clear that this pattern of ISIs 
is not described well by an exponential distribution, and therefore the original process 
cannot be accurately modeled as a simple Poisson process.  However the histogram in 
Figure 13B, which shows the result of transforming the observed ISIs according to the 
conditional intensity model of Eq. 12 with the model parameters shown in figure 8, is in 
close agreement with an exponential probability density function with mean 1.  This 
suggests that the transformed ISIs under the model conditional intensity are close to 
what we would expect for the transformed ISIs under the conditional intensity that 
generated the data.  
 

 
Figure 13. Histograms of A) original and B) transformed ISIs for retinal data.  Dashed line in panel 
B is the theoretical exponential(1) probability density function. 

 
Example 3 (cont’d). Transformed ISI’s for a Hippocampal Neuron 
 
Figure 14A shows a histogram of the actual ISIs from a hippocampal place cell of a rat 
during a free foraging task on a circular track.  Since this spiking activity is associated 
with the animal’s position at each point in time, we would not expect these ISIs to 
resemble samples from a stationary exponential distribution.  Figure 14B shows the 
transformed ISIs using the model of Eq. 15 and the parameters that give rise to the 
place field model illustrated in Fig. 10B.   
 
 

 
Figure 14. Histograms of A) original and B) transformed ISIs for Hippocampal place cell data.  
Dashed line in panel B is the theoretical exponential(1) probability density function. 
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While this transformation puts the bulk of the ISIs in the region that we would expect for 
samples from an exponential with parameter 1, we can see significant deviations from 
this expected distribution.  When the ISIs are rescaled according to this model, we 
obtain fewer very short ISIs (0-0.2) than expected and many more ISIs between 0.25-
0.5.  This suggests that the model in Eq. 15 does not completely capture the structure in 
the observed spiking activity.  One reason we may be failing to accurately describe the 
smaller ISIs is that this is an inhomogeneous Poisson model that ignores the effect of 
the firing history on the imminent spiking activity.   
 
 
VIII. The time-rescaling method leads to Q-Q and KS plots for point processes.  
 
One of the most important components of any statistical modeling analysis is to verify 
that the model accurately describes the structure observed in the data.  In subsequent 
chapters, we will examine multiple goodness-of-fit measures between neural spiking 
data and conditional intensity models.  Here, we discuss a pair of visualization 
procedures based on the time rescaling theorem that allow us to quickly envision how 
well a conditional intensity model describes the structure in an observed spike train and 
which, if any, inter-spike intervals are not well described by the model.  
 
As discussed in section VII, for any conditional intensity model, ( | )tt Hλ  and any set of 
spiking observations, , it is possible to construct a set of 

rescaled ISIs, , for 
1 2 ( )0 ,..., N Ts s s T< < < ≤

jz 1,..., ( )j N T= , such that if ( | )tt Hλ  correctly describes the 

conditional intensity of the process generating the spike times then the  will be 
samples from an i.i.d. exponential distribution with rate parameter 1. 

'sjz

 

 
Figure 15. A) Empirical (blue) and model (red) CDFs for sample rescaled point process data. B) KS 
plot of rescaled ISIs closely follows 45 degree line.  

 
We can construct an empirical cumulative distribution function, , for these 

rescaled ISIs by computing for each , the fraction of  that are smaller than .  
Figure 15A illustrates an example of an empirical distribution function for rescaled 
spiking data.  The rescaled ISI data are shown as blue tics on the x-axis.  The blue line 
is the empirical CDF for this data, which is plotted alongside the theoretical or model 
CDF for an exponential with rate parameter 1.  We see that the empirical CDF closely 
follows the model CDF, indicating that the rescaled data is well described by the 

( )
jZF z

z 'sjz z
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exponential, and hence the conditional intensity model is correctly capturing the 
statistical structure of the observed point process. 
 
A Kolmogorov-Smirnov (KS) plot is a plot of the empirical CDF against the model 
CDF, as shown in Figure 15B.  If the conditional intensity model accurately describes the 
observed spiking data, then the empirical and model CDFs should roughly coincide and 
the KS plot should follow a 45-degree line.  If the conditional intensity model fails to 
account for some aspect of the spiking behavior, then that lack of fit will be reflected in 
the KS plot as a significant deviation from the 45-degree line.  In later chapters, we will 
quantify this procedure and develop a KS test for goodness-of-fit.  In this example, the 
KS plot closely follows the 45-degree line, indicating overall agreement between the 
model and data.  The large step-like shape of the KS plot comes from the fact that we 
have used very few data points.  As the number of data points increases, these step 
shapes will become smaller. 
 
By inverting the empirical and model cumulative distribution functions, we obtain 
empirical and model quantiles, respectively.  For any probability level p , a quantile 
gives the data value such that the probability of observing a data point smaller than that 
value is p .  Visually, the quantiles are obtained by flipping the CDFs across the 45-
degree line.  Figure 16A shows the empirical and model quantiles for this example. 
 

 
Figure 16. A) Empirical (blue) and model (red) quantiles for sample rescaled point process data. B) 
Q-Q plot of rescaled ISIs indicates that all quantiles are well fit. 

 
A quantile-quantile (Q-Q) plot is a plot of the empirical quantiles against the model 
quantiles.  Like the KS plot, a Q-Q plot should follow a 45-degree line if the conditional 
intensity function accurately describes the spiking observations.  Wherever the Q-Q plot 
deviates from the 45-degree line, the rescaled ISIs at those values are not well fit by the 
conditional intensity model.  As we shall see in more detail later, KS plots are most 
useful in determining whether or not a model accurately describes the structure in the 
data, while Q-Q plots are useful in determining which rescaled ISIs are inappropriately 
modeled. 
 
Example 1 (cont’d). KS and Q-Q Plots of a Retinal Neuron 
 
Having transformed the ISIs for the spontaneous activity in the retinal neuron according 
to the model in Eq. 12 and the parameters in Fig. 8, we con construct KS and Q-Q plots 
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from the empirical distributions of the rescaled intervals.  Figure 17A shows the resulting 
KS plot, along with 95% confidence bounds, and Figure 17B shows the Q-Q plot, 
compared to a 45 degree line.  The KS plot is close to the 45 degree line and is always 
inside the confidence bounds (we will discuss the construction of these bounds later).  
The Q-Q plot shows close agreement with the 45 degree line for small values of the 
rescaled intervals, and only deviates toward the tail of the distribution.  This suggests 
that the model in Eq. 12 and the estimated parameters are able to accurately describe 
the observed spiking activity. 
 

 
Figure 17. A) KS plot and B) Q-Q plot for distribution of rescaled intervals shown in Fig 13B. 

 
Example 3 (cont’d). KS and Q-Q Plots of a Hippocampal Neuron 
 
We can similarly construct KS and Q-Q plots for the transformed place cell data shown 
in Figure 14.  In this case, the KS plot, shown in Fig. 18A deviates significantly from the 
45 degree line at multiple locations.  By examining the Q-Q plot in Fig. 18B, we see that 
the model results in too few small rescaled ISIs, too many mid-range ISIs and too few 
large ISIs.  Again, this suggests that this inhomogeneous Poisson model for the spiking 
activity is unable to completely describe the structure in the data.  It is likely that a similar 
model that incorporated spike history would provide a much closer fit to the data. 
 

 
Figure 18. A) KS plot and B) Q-Q plot for distribution of rescaled intervals shown in Fig 14B. 

 
IX. Point process theory leads to efficient methods for simulating spike data. 
 
The previous sections have developed useful tools for modeling and analyzing observed 
spike data.  It is also important to be able to generate new spike trains from point 
process models.  Simulations can help us make inferences about the underlying system, 
can be used to compute confidence bounds about estimated quantities, and are useful in 
determining emergent phenomena from ensembles of interacting point processes. 
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Simple Poisson processes and other renewal processes are fairly simple to simulate.  
Since the distributions of the ISIs are independent and identically distributed, we just 
need to generate a sequence of independent random samples for the ISIs according to 
the renewal distribution.  The  spike time will then be given by the sum of the first  
ISIs.  Most statistical software packages have built in functions to generate samples from 
standard distributions.  In particular, to generate a homogeneous Poisson process with 
rate 

thn n

λ , we can sample the ISIs, ix , from an exponential distribution with rate parameter 

λ , and take the  spike time to be thn
1

n

n i
i

s x
=

= ∑ . 

 
However, it is not as simple a matter to simulate a general point process, since the 
probability of spiking changes at each instant and can depend on past history.  It is 
usually quite difficult to simulate nonstationary mutually dependent processes directly.  
One simple approach, based on the Bernoulli approximation we discussed in section VI, 
involves partitioning the simulation interval into small bins of size , and in each 
interval generating a spike with probability 

tΔ
( | )tt H tλ Δ , where  is the history of 

previously generated spikes.  This works well for small simulation intervals.  However, as 
the simulation interval becomes large and as 

tH

tΔ  becomes small, the number of Bernoulli 
samples that needs to be generated becomes very large, and most of those samples will 
be zero, since ( | )tt H tλ Δ  is small.  This is a very inefficient method for simulating long 
spike trains. Instead, we can develop alternate approaches that require a relatively small 
number of i.i.d. samples, but manipulate those samples so that their final distribution 
matches those of a general point process.  
 
 
A Point process can be simulated by thinning 
  
The thinning algorithm was originally developed by Lewis and Shedler for simulating an 
inhomogeneous Poisson. Ogata later developed an extension of this algorithm to the 
general point process using the conditional intensity function.  In order to apply the 
algorithm, the conditional intensity function, ( | )tt Hλ , must be bound by some constant, 

maxλ .  The algorithm follows a two-stage process.  In the first stage, a set of candidate 
spikes is generated as a simple Poisson process with a rate maxλ .  This set of candidate 
spikes occurs more frequently than the point process we want to simulate, since 

max ( | )tt Hλ λ≥  at all times.  The next stage involves thinning out these candidate spikes 
by stochastically throwing out some spikes and accepting the rest.  If we accept each 
spike with probability 

max
( | )

ii sp s Hλ λ= , then the probability of generating and 

accepting a spike in a small interval ( , ]t t t+ Δ  is equal to the probability of accepting a 
spike given that one was generated multiplied by the probability of generating a spike in 

the first place, which is ( )max
max

( | )Pr(generate and accept) ( | )t
t

t H t t H tλ λ λ
λ

≈ Δ = Δ . 

 

 33



 
Figure 15.  Simulation of an inhomogeneous Poisson process using thinning.   

 
Figure 15 shows a simulation of an inhomogeneous Poisson process generated by 
thinning.  The Poisson rate function, ( )tλ  (dashed line), is bounded by maxλ  (solid line).  
The bottom spike train is a simple Poisson process with rate maxλ .  The upper spike train 
has been thinned so that it represents a sample from an inhomogeneous Poisson with 
the shown rate function.  When ( )tλ  is close to maxλ , many of the spikes are accepted.  
When ( )tλ  is close to zero, most of the spikes are rejected.  
  
In practice, thinning is typically only used when simulating inhomogenous Poisson 
processes with bounded rate functions.  A step-by-step description of the thinning 
algorithm is given below.  
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Thinning Algorithm.  
1.  Initialize i  and 1= 1j = . 
2.  Sample ix  from an exponential random variable with mean maxλ . 

3.  Set . Set 
1

i

i j
j

u
=

= ∑ x max( | ) /tp t Hλ λ= . 

4.  Sample  from a Bernoulli[ib ]p  distribution. 
5.  If , set  and set 1ib = js u= i 1j j= +  
5.  Set . 1i i= +
6.  Go to step 2. 

 
A point process can be simulated by time-rescaling  
 
Another approach to simulating general point processes is based on the time-rescaling 
theorem.  Previously, we used the time rescaling theorem to transform ISIs from general, 
history-dependent point processes to simple Poisson processes.  The theorem can also 
be used to convert simple Poisson process sample, which are easy to simulate, into 
general point processes. 
 
Looking back at Figure 12, we can see that if we simulate a set of  from an 
exponential distribution with rate parameter 1, as illustrated on the y-axis of the bottom 

panel, then we can find the times  that solve  to obtain a spike train 

with the desired conditional intensity function.  A step-by-step algorithm for simulating 
general point processes by time rescaling is given below. 
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Time-Rescaling Algorithm. Given an interval  the simulation algorithm proceeds
as follows:  

(0, ]T

1.  Initialize  and 0 0s = 1i = .  
2.  Sample  from an exponential random variable with mean 1. iz
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= ∫ dt

= +
4.  If then stop.  iu T>
5.  i i . 1
6.  Go to step 2. 

 
Example 1 (cont’d). Simulation of a Retinal Neuron 
 
Figure 16 shows an example of a simulated spike train for the retinal neuron under 
constant light conditions.  The spikes were generated by time-rescaling using the model 
of Eq. 12 and the parameters in Fig. 8.  The conditional intensity function at each point in 
time was calculated based on the spiking history in the past 120 msec.  The history was 

 35



initialized as 120 msec with no spikes, and each spike that was subsequently generated 
was added to this history.  Visually, we can see that this simulated spike train has similar 
features to the real data shown in figure 2C.  There are a number of bursts with multiple 
spikes being fired rapidly, as well as some longer ISIs.  
 

 
Figure 16.  Simulated spontaneous spiking activity of a retinal neuron generated by time-rescaling. 

 
Example 3 (cont’d). Simulation of a Hippocampal Neuron 
 
Figure 17 shows an example of the simulated spiking activity of a hippocampal place cell 
with the same place field properties as the one shown in Figure 10B.  The estimated 
parameters and the actual path of the rat were plugged into the model of equation 15 to 
obtain a firing rate at each point in time.  The maximum firing rate was about 12.5 
spikes/second.  The spiking activity was simulated by thinning, using this maximum 
value.  10,000 spikes were generated, and of those, 1725 were accepted.  It is clear 
from Figure 17 that even though the generated spikes were independent of the animal’s 
position, these spike were much more likely to be accepted in the region of the place 
field. 
 

 
Figure 17.  Simulated spiking activity of a place cell generated by thinning.  

 
 
Appendix: 
 
AI. The sum of independent Poisson random variables is Poisson 
 
Let X  and Y  be independent Poisson random variables with parameters xλ  and yλ  
respectively.  Then the probability mass function for the random variable Z X Y= +  is 
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Applying the binomial theorem to the last expression gives, 
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Pr( ) ( )
!

x y
n

x y
eZ n

n

λ λ

λ λ
− +

= = + , (A1) 

which is the probability mass function for a Poisson random variable with parameter 
x yλ λ+ .  Therefore, the sum of two independent Poisson random variables is itself a 

Poisson random variable with parameter equal to the sum of the parameters of the 
original Poissons.  It is clear that this result can be extended to the sum of any number 
of Poisson random variables, which will still be Poisson with a parameter that is the sum 
of all the component parameters. 
 
This result is important to ensure that our first definition of a homogeneous Poisson 
process, which states that the distribution of any interval has a Poisson distribution, is 
well defined.  For example, let  be the counting process for a simple Poisson 
process with rate 

( )N t
λ .  Then by this definition, ( , ] Pois[ ]t t tN tλ+ΔΔ Δ∼  and 

( , ] Pois[ ]t t t t sN sλ+Δ +Δ +ΔΔ ∼ Δ

t s
.  It must also be the case, by this definition, that 

( , ] Pois[ ( )]t t t sN λ+Δ +ΔΔ ∼ Δ + Δ

)

.  We see that this is indeed the case since 

, which is the sum of Poisson random variables and 
is hence Poisson with parameter 

( , ] ( , ] ( , ]t t t s t t t t t t t sN N N+Δ +Δ +Δ +Δ +Δ +ΔΔ = Δ + Δ
( t sλ Δ + Δ .  Therefore, it is necessarily true that if the 

increments over all smaller intervals are Poisson then so too are the increments over all 
other intervals. 
 
Equation A1 is also important for understanding the properties of inhomogeneous 
Poisson processes.  We originally defined this process as the limit of a Bernoulli process 
as .  Below, in section AII, we show that in this limit the Bernoulli increments are 
equivalent to Poisson increments.  If we split any interval ( ,  into increasingly finer 
standard partitions by letting  grow to infinity and by setting 

0tΔ →
]a b

n ( ) /t b a nΔ = − , then 

, which is the sum of infinitesimal Poisson increments.  By 

Equation A1, this must have a Poisson distribution with a parameter equal to 
.  But this limit is by definition the Riemann integral of 

( , ] ( ( 1) , ]
1

lim
n

a b a i t a i tn i
N N + − Δ + Δ→∞

=

Δ = Δ∑

1
lim ( )

n

n i
a i t tλ

→∞
=

+ Δ Δ∑ ( )tλ  over the 

interval .  Therefore, . ( , ]a b ( , ] ~ Pois[ ( ) ]
b

a b a
N tλΔ ∫ dt
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AII. As  approaches 0, Poisson and Binomial increments become equivalent.  tΔ
 

Let  denote any function such that ( )o tΔ
0

( )lim 0
t

o t
tΔ →

Δ =Δ .  In other words, a function is 

 if it goes to zero faster than ( )o tΔ tΔ  itself.  We show that the difference between the 
probability mass function of a Poisson and a Bernoulli random variable is , and this 
component becomes negligible as 

( )o tΔ
0tΔ → . 

 
Assume  is a Poisson increment with parameter iNΔ tλΔ .  Then the probability of 

observing no spikes in the interval is ( )Pr 0 1 ( )t
iN e t oλ λ− Δ tΔ = = = − Δ + Δ , where the 

final term comes from the Taylor expansion of te λ− Δ .  Up to order , this is 
equivalent to the probability of a Bernoulli[

( )o tΔ
]p  random variable being 0, when p tλ= Δ .  

The probability of firing exactly one spike in the interval is 
, which is equivalent to the 

probability of a Bernoulli[
( )Pr 1 (1 ( )) ( )t

iN te t t o t t oλλ λ λ λ− ΔΔ = = Δ = Δ − Δ + Δ = Δ + Δt
]p  random variable being 1, when p tλ= Δ .  And the 

probability of firing more than one spike is ( )Pr ( ) / ! ( )k t
iN k t e k o tλλ − ΔΔ = = Δ = Δ , for 

, which becomes negligibly small as 1k > tΔ  approaches 0. 
 
Therefore, for small enough , we can treat a sequence of Poisson increments as a 
simple Bernoulli process with binary outcomes in each interval.  In particular, this fact 
means that Definitions 1 and 2 for a simple Poisson process in Section IV are 
equivalent.  For inhomogeneous Poisson processes, this means that for small enough 
intervals, each increment is Poisson, and hence by the discussion in Section AI, the 
increments over longer intervals are also Poisson. 

tΔ

 
 
AIII. The ISI distribution and joint density for a general point process can be 
computed from the Bernoulli approximation 
 
For any interval, ( , , we construct the  standard partition of that interval by setting 

, and letting .  The probability of observing zero spikes in the 
larger interval is equivalent to the probability of observing no spikes in each of the 
partition intervals,  

]a b thn
( ) /t b aΔ = − n tit a i= + Δ

 
( ) ( )0 1 1

1 0 1

( , ] ( , ] ( , ]

( , ] 1 ( , ] 0

Pr 0 Pr 0,..., 0

                        Pr( 0 | ) Pr( 0 | ).
n n

n n

a b t t t t

t t n t t

N N N

N H N
−

− −

Δ = = Δ = Δ =

= Δ = ⋅⋅⋅ Δ = H
.  

 
Equation 5 states that for sufficiently small tΔ , each of these small history dependent 
increments takes on the value 0 with probability 1 ( | )i it H tλ− Δ .  Therefore, 
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where the limit of the sum in the exponential term is the Riemann integral of the 
conditional intensity function over ( , . ]a b
 
Assume that we observe the  spike of a spike train at a time , and the 
preceding spike history, 

th( 1)i − 1is −

1is
H

−
, and we want to compute the probability distribution of the 

next spike time, .  The probability that  is greater than some time  is just the 
probability that the point process does not spike between 

iS iS s

1is −  and .  Therefore by 
Equation A2, 

s
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and the CDF of the  spike time is thi
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We obtain the pdf of the  spike time by differentiating the CDF with respect to , thi s
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This is Equation 6 in section VI. 
 
Using Equations A2 and A3, we can compute the joint likelihood of observing any spike 
train.   

      (A4) 
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This is Equation 7 in section VI.  Once a conditional intensity model is specified for a 
point process, and data is observed, this joint density is the likelihood function for that 
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data, as a function of any parameters in the model.  This likelihood will be the 
cornerstone of our point process model fitting framework. 
 
 
AIV. Proof of the time rescaling theorem 
 
Let  be an observation interval and let  for (0, ]T ( )N t 0 t T< ≤  be the counting process 
of a point process with conditional intensity function ( | )tt Hλ .  Assume we observe a set 
of spikes .  Define  for 1 ( )0 ... N Ts s< < < ≤ T Tiz 1,..., ( )i N=  as in Equation #####.  

Define a Jacobian matrix whose  element is   th,i j

  ,
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0 otherwi
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This Jacobian is lower triangular, so its determinant is just the product of its diagonal 

elements, 
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Using Equation 6, the joint density function of the first  spike times is given by  n
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which is the joint probability density of independent exponential random variables with 
unit rate parameter. 
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