import numpy as np import matplotlib.pyplot as plt # roll the die: rng = np.random.RandomState(57281) x1 = rng.random_integers( 1, 6, 100 ) x2 = rng.random_integers( 1, 6, 500 ) bins = np.arange(0.5, 7, 1.0) plt.xkcd() fig = plt.figure( figsize=(6,3) ) ax = fig.add_subplot( 1, 2, 1 ) ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) ax.yaxis.set_ticks_position('left') ax.xaxis.set_ticks_position('bottom') ax.set_xlim(0, 7) ax.set_xticks( range(1, 7) ) ax.set_xlabel( 'x' ) ax.set_ylim(0, 98) ax.set_ylabel( 'Frequency' ) ax.hist([x2, x1], bins, color=['#FFCC00', '#FFFF66' ]) ax = fig.add_subplot( 1, 2, 2 ) ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) ax.yaxis.set_ticks_position('left') ax.xaxis.set_ticks_position('bottom') ax.set_xlim(0, 7) ax.set_xticks( range(1, 7) ) ax.set_xlabel( 'x' ) ax.set_ylim(0, 0.23) ax.set_ylabel( 'Probability' ) ax.plot([0.2, 6.8], [1.0/6.0, 1.0/6.0], '-r', lw=2, zorder=1) ax.hist([x2, x1], bins, normed=True, color=['#FFCC00', '#FFFF66' ], zorder=10) plt.tight_layout() fig.savefig( 'diehistograms.pdf' ) #plt.show()