import numpy as np import matplotlib.pyplot as plt from plotstyle import * # normal distribution: x = np.arange(-3.0, 5.0, 0.01) g = np.exp(-0.5*x*x)/np.sqrt(2.0*np.pi) x1=0.0 x2=1.0 fig, ax = plt.subplots(figsize=cm_size(figure_width, 1.2*figure_height)) ax.set_xlabel('x') ax.set_ylabel('Probability density p(x)') ax.set_ylim(0.0, 0.46) ax.set_yticks(np.arange(0.0, 0.45, 0.1)) ax.annotate('Gaussian', xy=(-1.0, 0.28), xycoords='data', xytext=(-2.5, 0.35), textcoords='data', ha='left', arrowprops=dict(arrowstyle="->", relpos=(0.5,0.0), connectionstyle="angle3,angleA=10,angleB=110")) ax.annotate('$P(0", relpos=(0.0,0.5), connectionstyle="angle3,angleA=10,angleB=80")) ax.fill_between(x[(x>x1)&(xx1)&(x