import numpy as np import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec from plotstyle import * fig = plt.figure(figsize=cm_size(figure_width, 2.0*figure_height)) spec = gridspec.GridSpec(nrows=2, ncols=2, wspace=0.35, hspace=0.5, **adjust_fs(fig, left=5.5, top=0.5, bottom=2.7)) rng = np.random.RandomState(2981) n = 200 for k, r in enumerate([ 1.0, 0.6, 0.0, -0.9 ]) : x = rng.randn(n) y = r*x + np.sqrt(1.0-r*r)*rng.randn(n) ax = fig.add_subplot(spec[k//2, k%2]) ax.text(-2, 2.5, 'r=%.1f' % r) if k == 0 : ax.text(2.8, -2.8, 'positively\ncorrelated', ha='right', va='bottom') elif k == 1 : ax.text(2.8, -2.8, 'weakly\ncorrelated', ha='right', va='bottom') elif k == 2 : ax.text(2.8, -2.8, 'not\ncorrelated', ha='right', va='bottom') elif k == 3 : ax.text(-2.8, -2.8, 'negatively\ncorrelated', ha='left', va='bottom') ax.set_xlabel('x') ax.set_ylabel('y') ax.set_xlim(-3.0, 3.0) ax.set_ylim(-3.0, 3.0) ax.plot(x[(np.abs(x)<2.8)&(np.abs(y)<2.8)], y[(np.abs(x)<2.8)&(np.abs(y)<2.8)], **psAm) plt.savefig('correlation.pdf')