import numpy as np
import matplotlib.pyplot as plt

def hompoisson(rate, trials, duration) :
    spikes = []
    for k in range(trials) :
        times = []
        t = 0.0
        while t < duration :
            t += np.random.exponential(1/rate)
            times.append( t )
        spikes.append( times )
    return spikes

def inhompoisson(rate, trials, dt) :
    spikes = []
    p = rate*dt
    for k in range(trials) :
        x = np.random.rand(len(rate))
        times = dt*np.nonzero(x<p)[0]
        spikes.append( times )
    return spikes


def pifspikes(input, trials, dt, D=0.1) :
    vreset = 0.0
    vthresh = 1.0
    tau = 1.0
    spikes = []
    for k in range(trials) :
        times = []
        v = vreset
        noise = np.sqrt(2.0*D)*np.random.randn(len(input))/np.sqrt(dt)
        for k in range(len(noise)) :
            v += (input[k]+noise[k])*dt/tau
            if v >= vthresh :
                v = vreset
                times.append(k*dt)
        spikes.append( times )
    return spikes

def isis( spikes ) :
    isi = []
    for k in range(len(spikes)) :
        isi.extend(np.diff(spikes[k]))
    return np.array( isi )

def plotisih( ax, isis, binwidth=None ) :
    if binwidth == None :
        nperbin = 200.0    # average number of isis per bin
        bins = len(isis)/nperbin  # number of bins
        binwidth = np.max(isis)/bins
        if binwidth < 5e-4 :     # half a millisecond
            binwidth = 5e-4
    h, b = np.histogram(isis, np.arange(0.0, np.max(isis)+binwidth, binwidth), density=True)
    ax.text(0.9, 0.85, 'rate={:.0f}Hz'.format(1.0/np.mean(isis)), ha='right', transform=ax.transAxes)
    ax.text(0.9, 0.75, 'mean={:.0f}ms'.format(1000.0*np.mean(isis)), ha='right', transform=ax.transAxes)
    ax.text(0.9, 0.65, 'CV={:.2f}'.format(np.std(isis)/np.mean(isis)), ha='right', transform=ax.transAxes)
    ax.set_xlabel('ISI [ms]')
    ax.set_ylabel('p(ISI) [1/s]')
    ax.bar( 1000.0*b[:-1], h, 1000.0*np.diff(b) )

def plotreturnmap(ax, isis, lag=1, max=None) :
    ax.set_xlabel(r'ISI$_i$ [ms]')
    ax.set_ylabel(r'ISI$_{i+1}$ [ms]')
    if max != None :
        ax.set_xlim(0.0, 1000.0*max)
        ax.set_ylim(0.0, 1000.0*max)
    ax.scatter( 1000.0*isis[:-lag], 1000.0*isis[lag:] )

def plotserialcorr(ax, isis, maxlag=10) :
    lags = np.arange(maxlag+1)
    corr = [1.0]
    for lag in lags[1:] :
        corr.append(np.corrcoef(isis[:-lag], isis[lag:])[0,1])
    ax.set_xlabel(r'lag $k$')
    ax.set_ylabel(r'ISI correlation $\rho_k$')
    ax.set_xlim(0.0, maxlag)
    ax.set_ylim(-1.0, 1.0)
    ax.plot(lags, corr, '.-', markersize=20)

# parameter:
rate = 20.0
drate = 50.0
trials = 10
duration = 500.0
dt = 0.001
tau = 0.1;

# homogeneous spike trains:
homspikes = hompoisson(rate, trials, duration)

# OU noise:
rng = np.random.RandomState(54637281)
time = np.arange(0.0, duration, dt)
x = np.zeros(time.shape)+rate
n = rng.randn(len(time))*drate*tau/np.sqrt(dt)+rate
for k in range(1,len(x)) :
    x[k] = x[k-1] + (n[k]-x[k-1])*dt/tau
x[x<0.0] = 0.0

# pif spike trains:
inhspikes = pifspikes(x, trials, dt, D=0.3)

fig = plt.figure( figsize=(9,3) )

ax = fig.add_subplot(1, 2, 1)
plotserialcorr(ax, isis(homspikes))
ax.set_ylim(-0.2, 1.0)

ax = fig.add_subplot(1, 2, 2)
plotserialcorr(ax, isis(inhspikes))
ax.set_ylim(-0.2, 1.0)

plt.tight_layout()
plt.savefig('serialcorrexamples.pdf')
#plt.show()