%% general settings for the model neuron: trials = 10; tmax = 50.0; %% generate and plot spiketrains for two inputs: I1 = 14.0; I2 = 15.0; spikes1 = lifspikes(trials, I1, tmax); spikes2 = lifspikes(trials, I2, tmax); subplot(1, 2, 1); tmin = 10.0; spikeraster(spikes1, tmin, tmin+2.0); title(sprintf('I_1=%g', I1)) subplot(1, 2, 2); spikeraster(spikes2, tmin, tmin+2.0); title(sprintf('I_2=%g', I2)) %savefigpdf(gcf(), 'spikeraster.pdf') %% spike count histograms: Ts = [0.01 0.1 0.3 1.0]; cmax = 100; figure() for k = 1:length(Ts) T = Ts(k); [c1, b1] = counthist(spikes1, 0.0, tmax, T, cmax); [c2, b2] = counthist(spikes2, 0.0, tmax, T, cmax); subplot(2, 2, k) bar(b1, c1, 'r'); hold on; bar(b2, c2, 'b'); xlim([0 cmax]) title(sprintf('T=%gms', 1000.0*T)) hold off; end %% discrimination measure: T = 0.1; cmax = 15; [d, thresholds, true1s, false1s, true2s, false2s, pratio] = discriminability(spikes1, spikes2, tmax, T, cmax); figure() subplot(1, 3, 1); plot(thresholds, true1s, 'b'); hold on; plot(thresholds, true2s, 'b'); plot(thresholds, false1s, 'r'); plot(thresholds, false2s, 'r'); xlim([0 cmax]) hold off; % Ratio: subplot(1, 3, 2); fprintf('discriminability = %g\n', d); plot(thresholds, pratio); % ROC: subplot(1, 3, 3); plot(false2s, true1s); %% discriminability: Ts = 0.01:0.01:1.0; cmax = 100; ds = zeros(length(Ts), 1); for k = 1:length(Ts) T = Ts(k); [c1, b1] = counthist(spikes1, 0.0, tmax, T, cmax); [c2, b2] = counthist(spikes2, 0.0, tmax, T, cmax); [d, thresholds, true1s, false1s, true2s, false2s, pratio] = discriminability(spikes1, spikes2, tmax, T, cmax); ds(k) = d; end figure() plot(Ts, ds)