import numpy as np import matplotlib.pyplot as plt import scipy.io as spio import scipy.stats as spst import scipy as sp from IPython import embed def set_axis_fontsize(axis, label_size, tick_label_size=None, legend_size=None): """ Sets axis, tick label and legend font sizes to the desired size. :param axis: the axes object :param label_size: the size of the axis label :param tick_label_size: the size of the tick labels. If None, lable_size is used :param legend_size: the size of the font used in the legend.If None, the label_size is used. """ if not tick_label_size: tick_label_size = label_size if not legend_size: legend_size = label_size axis.xaxis.get_label().set_fontsize(label_size) axis.yaxis.get_label().set_fontsize(label_size) for tick in axis.xaxis.get_major_ticks() + axis.yaxis.get_major_ticks(): tick.label.set_fontsize(tick_label_size) l = axis.get_legend() if l: for t in l.get_texts(): t.set_fontsize(legend_size) def get_instantaneous_rate(times, max_t=30., dt=1e-4): time = np.arange(0., max_t, dt) indices = np.asarray(times / dt, dtype=int) intervals = np.diff(np.hstack(([0], times))) inst_rate = np.zeros(time.shape) for i, index in enumerate(indices[1:]): inst_rate[indices[i-1]:indices[i]] = 1/intervals[i] return time, inst_rate def plot_isi_rate(spike_times, max_t=30, dt=1e-4): times = np.squeeze(spike_times[0][0])[:50000] time, rate = get_instantaneous_rate(times, max_t=50000*dt) rates = np.zeros((len(rate), len(spike_times))) for i in range(len(spike_times)): _, rates[:, i] = get_instantaneous_rate(np.squeeze(spike_times[i][0])[:50000], max_t=50000*dt) avg_rate = np.mean(rates, axis=1) rate_std = np.std(rates, axis=1) fig = plt.figure() ax1 = fig.add_subplot(311) ax2 = fig.add_subplot(312) ax3 = fig.add_subplot(313) ax1.vlines(times[times < (50000*dt)], ymin=0, ymax=1, color="dodgerblue", lw=1.5) ax1.set_ylabel("skpikes", fontsize=12) set_axis_fontsize(ax1, 12) ax1.set_xlim([0, 5]) ax2.plot(time, rate, label="instantaneous rate, trial 1") ax2.set_ylabel("firing rate [Hz]", fontsize=12) ax2.legend(fontsize=12) set_axis_fontsize(ax2, 12) ax3.fill_between(time, avg_rate+rate_std, avg_rate-rate_std, color="dodgerblue", alpha=0.5, label="standard deviation") ax3.plot(time, avg_rate, label="average rate") ax3.set_xlabel("times [s]", fontsize=12) ax3.set_ylabel("firing rate [Hz]", fontsize=12) ax3.legend(fontsize=12) ax3.set_ylim([0, 450]) set_axis_fontsize(ax3, 12) fig.set_size_inches(15, 10) fig.subplots_adjust(left=0.1, bottom=0.125, top=0.95, right=0.95) fig.set_facecolor("white") fig.savefig("figures/instantaneous_rate.png") plt.close() def get_binned_rate(times, bin_width=0.05, max_t=30., dt=1e-4): time = np.arange(0., max_t, dt) bins = np.arange(0., max_t, bin_width) bin_indices = np.asarray(bins / dt, np.int) hist, _ = sp.histogram(times, bins) rate = np.zeros(time.shape) for i, b in enumerate(bin_indices[1:]): rate[bin_indices[i-1]:b] = hist[i-1]/bin_width return time, rate def plot_bin_rate(spike_times, bin_width, max_t=30, dt=1e-4): times = np.squeeze(spike_times[0][0]) time, rate = get_binned_rate(times) rates = np.zeros((len(rate), len(spike_times))) for i in range(len(spike_times)): _, rates[:, i] = get_binned_rate(np.squeeze(spike_times[i][0])) avg_rate = np.mean(rates, axis=1) rate_std = np.std(rates, axis=1) fig = plt.figure() ax1 = fig.add_subplot(311) ax2 = fig.add_subplot(312) ax3 = fig.add_subplot(313) ax1.vlines(times[times < (100000*dt)], ymin=0, ymax=1, color="dodgerblue", lw=1.5) ax1.set_ylabel("skpikes", fontsize=12) ax1.set_xlim([0, 5]) set_axis_fontsize(ax1, 12) ax2.plot(time, rate, label="binned rate, trial 1") ax2.set_ylabel("firing rate [Hz]", fontsize=12) ax2.legend(fontsize=12) ax2.set_xlim([0, 5]) set_axis_fontsize(ax2, 12) ax3.fill_between(time, avg_rate+rate_std, avg_rate-rate_std, color="dodgerblue", alpha=0.5, label="standard deviation") ax3.plot(time, avg_rate, label="average rate") ax3.set_xlabel("times [s]", fontsize=12) ax3.set_ylabel("firing rate [Hz]", fontsize=12) ax3.legend(fontsize=12) ax3.set_xlim([0, 5]) ax3.set_ylim([0, 450]) set_axis_fontsize(ax3, 12) fig.set_size_inches(15, 10) fig.subplots_adjust(left=0.1, bottom=0.125, top=0.95, right=0.95) fig.set_facecolor("white") fig.savefig("figures/binned_rate.png") plt.close() def get_convolved_rate(times, sigma, max_t=30., dt=1.e-4): time = np.arange(0., max_t, dt) kernel = spst.norm.pdf(np.arange(-8*sigma, 8*sigma, dt),loc=0,scale=sigma) indices = np.asarray(times/dt, dtype=int) rate = np.zeros(time.shape) rate[indices] = 1.; conv_rate = np.convolve(rate, kernel, mode="same") return time, conv_rate def plot_conv_rate(spike_times, sigma=0.05, max_t=30, dt=1e-4): times = np.squeeze(spike_times[0][0]) time, rate = get_convolved_rate(times, sigma) rates = np.zeros((len(rate), len(spike_times))) for i in range(len(spike_times)): _, rates[:, i] = get_convolved_rate(np.squeeze(spike_times[i][0]), sigma) avg_rate = np.mean(rates, axis=1) rate_std = np.std(rates, axis=1) fig = plt.figure() ax1 = fig.add_subplot(311) ax2 = fig.add_subplot(312) ax3 = fig.add_subplot(313) ax1.vlines(times[times < (100000*dt)], ymin=0, ymax=1, color="dodgerblue", lw=1.5) ax1.set_ylabel("skpikes", fontsize=12) ax1.set_xlim([0, 5]) set_axis_fontsize(ax1, 12) ax2.plot(time, rate, label="convolved rate, trial 1") ax2.set_ylabel("firing rate [Hz]", fontsize=12) ax2.legend(fontsize=12) ax2.set_xlim([0, 5]) set_axis_fontsize(ax2, 12) ax3.fill_between(time, avg_rate+rate_std, avg_rate-rate_std, color="dodgerblue", alpha=0.5, label="standard deviation") ax3.plot(time, avg_rate, label="average rate") ax3.set_xlabel("times [s]", fontsize=12) ax3.set_ylabel("firing rate [Hz]", fontsize=12) ax3.legend(fontsize=12) ax3.set_xlim([0, 5]) ax3.set_ylim([0, 450]) set_axis_fontsize(ax3, 12) fig.set_size_inches(15, 10) fig.subplots_adjust(left=0.1, bottom=0.125, top=0.95, right=0.95) fig.set_facecolor("white") fig.savefig("figures/convolved_rate.png") plt.close() def plot_comparison(spike_times, bin_width, sigma, max_t=30., dt=1e-4): times = np.squeeze(spike_times[0][0]) time, conv_rate = get_convolved_rate(times, bin_width/np.sqrt(12.)) time, inst_rate = get_instantaneous_rate(times) time, binn_rate = get_binned_rate(times, bin_width) fig = plt.figure() ax1 = fig.add_subplot(411) ax2 = fig.add_subplot(412) ax3 = fig.add_subplot(413) ax4 = fig.add_subplot(414) ax1.spines["right"].set_visible(False) ax1.spines["top"].set_visible(False) ax1.yaxis.set_ticks_position('left') ax1.xaxis.set_ticks_position('bottom') ax2.spines["right"].set_visible(False) ax2.spines["top"].set_visible(False) ax2.yaxis.set_ticks_position('left') ax2.xaxis.set_ticks_position('bottom') ax3.spines["right"].set_visible(False) ax3.spines["top"].set_visible(False) ax3.yaxis.set_ticks_position('left') ax3.xaxis.set_ticks_position('bottom') ax4.spines["right"].set_visible(False) ax4.spines["top"].set_visible(False) ax4.yaxis.set_ticks_position('left') ax4.xaxis.set_ticks_position('bottom') ax1.vlines(times[times < (100000*dt)], ymin=0, ymax=1, color="dodgerblue", lw=1.5) ax1.set_ylabel("spikes", fontsize=10) ax1.set_xlim([2.5, 3.5]) ax1.set_ylim([0, 1]) ax1.set_yticks([0, 1]) set_axis_fontsize(ax1, 10) ax1.set_xticks([2.5, 2.75, 3.0, 3.25, 3.5]) ax1.set_xticklabels([]) ax2.plot(time, inst_rate, lw=1.5, label="instantaneous rate") ax2.set_ylabel("firing rate [Hz]", fontsize=10) ax2.legend(fontsize=10) ax2.set_xlim([2.5, 3.5]) ax2.set_ylim([0, 300]) ax2.set_yticks(np.arange(0, 400, 100)) set_axis_fontsize(ax2, 10) ax2.set_xticks([2.5, 2.75, 3.0, 3.25, 3.5]) ax2.set_xticklabels([]) ax3.plot(time, binn_rate, lw=1.5, label="binned rate") ax3.set_ylabel("firing rate [Hz]", fontsize=10) ax3.legend(fontsize=10) ax3.set_xlim([2.5, 3.5]) ax3.set_ylim([0, 300]) ax3.set_yticks(np.arange(0, 400, 100)) set_axis_fontsize(ax3, 10) ax3.set_xticks([2.5, 2.75, 3.0, 3.25, 3.5]) ax3.set_xticklabels([]) ax4.plot(time, conv_rate, lw=1.5, label="convolved rate") ax4.set_xlabel("time [s]", fontsize=10) ax4.set_ylabel("firing rate [Hz]", fontsize=10) ax4.legend(fontsize=10) ax4.set_xlim([2.5, 3.5]) ax4.set_xticks([2.5, 2.75, 3.0, 3.25, 3.5]) ax4.set_ylim([0, 300]) ax4.set_yticks(np.arange(0, 400, 100)) set_axis_fontsize(ax4, 10) fig.set_size_inches(7.5, 5) fig.subplots_adjust(left=0.1, bottom=0.125, top=0.95, right=0.95, ) fig.set_facecolor("white") fig.savefig("firingrates.pdf") plt.close() if __name__ == "__main__": spike_times = spio.loadmat('lifoustim.mat')["spikes"] # plot_isi_rate(spike_times) # plot_bin_rate(spike_times, 0.05) # plot_conv_rate(spike_times, 0.025) plot_comparison(spike_times, 0.05, 0.025)