n = 10000; %% (a) simulate n times rolling a die: maxeyes = 8; x = rollthedie(n, maxeyes); %% (b) probability P(5): P5 = sum(x == 5)/length(x); fprintf('P(5)=%.3f, expected is %.3f\n', P5, 1/maxeyes); for i =1:maxeyes P = sum(x == i)/length(x); fprintf('P(%d)=%.3f, expected is %.3f\n', i, P, 1/maxeyes); end %% (c) P(i) P = zeros(1, maxeyes); for i =1:maxeyes P(i) = sum(x == i)/length(x); end subplot(1, 2, 1) plot([0 maxeyes+1], [1/maxeyes 1/maxeyes], 'r', 'linewidth', 3) hold on bar(P); hold off set(gca, 'XTick', 1:maxeyes); xlim([0 maxeyes+1]); xlabel('Eyes'); ylabel('Probability'); %% (d) histogram of x subplot(1, 2, 2); diehist(x); %% (e) loaded die % eye 1 to 5 have P=1/8, eye 6 has P = 3/8 ! x = randi(8, 1, n); % random numbers from 1 to 8 x(x>6) = 6; % set numbers 7 and 8 to 6 diehist(x); savefigpdf(gcf, 'die1.pdf', 12, 5)