\chapter{Spectral analyses} This is a stub that should be filled :) % \section{The Fourier space} \section{The Fourier Transform} Complex numbers... magnitude and phase \subsection{Fast Fourier transform} \section{Power spectrum} \[ S_{x,x} = |X(f)|^2 \] Parceval theorem: \[ \int_{-\infty}^{+\infty} x(t)^2 dt = \int_{-\infty}^{+\infty} |X(f)|^2 df \] Autocorrelation: Wiener-Kinchin theorem: \[ {\cal F}\{Corr(x,x)\} = |X(f)|^2 \] \section{Spectrogram} \section{Cross spectrum} \[ S_{x,y} = X(f)Y^*(f) \] is complex valued (magnitude and phase)! Correlation theorem: \[ {\cal F}\{Corr(x,y)\} = X(f)Y^*(f) = S_{x,y} \] \section{Transfer function} \section{Coherence function} \subsection{Forward and reverse filter}