% Visualize some common matrix transformations % in a 2D coordinate system disp( 'Click into the plot to advance to the next matrix' ) matrixbox( [ 1 0; 0 1], 'Identity' ); matrixbox( [ 2 0; 0 1], 'Scale x' ); matrixbox( [ 1 0; 0 2], 'Scale y' ); matrixbox( [ 2 0; 0 2], 'Scale x and y' ); matrixbox( [ 0.5 0; 0 0.5], 'Scale x and y' ); matrixbox( [ -1 0; 0 1], 'Flip x' ); matrixbox( [ 1 0; 0 -1], 'Flip y' ); matrixbox( [ -1 0; 0 -1], 'Flip both' ); matrixbox( [ 1 2; 0 1], 'Shear x' ); matrixbox( [ 1 0; 2 1], 'Shear y' ); matrixbox( [ 0.5 1; 1 0.5], 'Something A' ); matrixbox( [ 0.5 1; 1.2 0.6], 'Something B' ); % rotation matrices: for deg = 0:10:360 phi = deg*pi/180.0; matrixbox( [ cos(phi) -sin(phi); sin(phi) cos(phi)], sprintf( 'Rotate %.0f', deg ) ); end