from __future__ import division import seaborn as sns import sys sys.path.append('/home/fabee/code/') from matplotlib.pyplot import * from fabee.Plotting import * from scipy import stats from numpy import * sns.set_context("talk", font_scale=1.5, rc={"lines.linewidth": 2.5}) # --------------------------------------------------------------------------- fig, ax = subplots() fig.subplots_adjust(bottom=.3, left=.3) n = 50 x = loadtxt('scripts/thymusglandweights.dat')[:n] ax.bar([0,1],[mean(x),mean(x)],yerr = [std(x,ddof=1), std(x,ddof=1)/sqrt(n)], facecolor='dodgerblue', alpha=.8,width=.7, align='center', error_kw={'color':'k','lw':2}, capsize=10, ecolor='k') ax.set_title('standard deviation or standard error?',fontsize=14, fontweight='bold') ax.set_xlim([-.5,1.5]) box_off(ax) #disjoint_axes(ax) ax.set_xticks([0,1]) ax.set_xticklabels([r'$\hat\sigma$', r'$\frac{\hat\sigma}{\sqrt{n}}$'], fontsize=30) ax.set_ylabel(r'$\frac{1}{n}\sum_{i=1}^n x_i$',fontsize=30, fontweight='bold') fig.savefig('figs/StandardErrorOrStandardDeviation.pdf') # --------------------------------------------------------------------------- fig, ax = subplots() t = linspace(-5,5,1000) t2 = linspace(stats.laplace.ppf(0.025),stats.laplace.ppf(1-0.025),1000) ax.fill_between(t,stats.laplace.pdf(t),color='dodgerblue') ax.set_xticks([]) ax.text(5,-0.05, r'$\hat m$',fontsize=30) ax.text(0,0.7, r'$m$',fontsize=30) ax.set_yticks([]) #disjoint_axes(ax) box_off(ax) ax.set_title('putative sampling distribution of the median',fontsize=14, fontweight='bold') ax.axis([-5,5,0,.8]) ax.plot([0,0],[0,.7],'--k',lw=2) fig.savefig('figs/samplingDistributionMedian00.pdf') ax.fill_between(t2,stats.laplace.pdf(t2),color='crimson') fig.savefig('figs/samplingDistributionMedian01.pdf') # --------------------------------------------------------------------------- fig, ax = subplots() k = 7 N = 21 F = stats.f t = linspace(1e-6,8,1000) t2= linspace(F.ppf(0.95,k-1,N-k),8,1000) ax.fill_between(t,F.pdf(t,k-1,N-k),color='dodgerblue') ax.fill_between(t2,F.pdf(t2,k-1,N-k),color='crimson') ax.set_xlabel('group MS/ error MS') ax.set_ylabel(r'p(group MS/ error MS| $H_0$)') ax.set_title('F-distribution',fontsize=14, fontweight='bold') ax.set_ylim((0,0.8)) box_off(ax) fig.savefig('figs/Fdistribution00.pdf') # --------------------------------------------------------------------------- fig, ax = subplots() n = 5 p = stats.t.pdf t = linspace(-5,8,1000) t0 = 1.5 t00 = 1. mu0 = 3 t1 = linspace(-5,t00,1000) t2 = linspace(t0,8,1000) t3 = linspace(-5,-t0,1000) ax.fill_between(t,p(t,n-1),color='dodgerblue',alpha=1) ax.fill_between(t2,p(t2,n-1),color='indigo',alpha=1) ax.fill_between(t3,p(t3,n-1),color='indigo',alpha=1) ax.set_xlabel('t') ax.set_ylabel(r'sampling distribution') ax.set_ylim((0,0.8)) box_off(ax) fig.savefig('figs/experimentalDesign00.pdf') ax.fill_between(t,p(t,n-1,loc=mu0),color='lime',alpha=.5) ax.fill_between(t1,p(t1,n-1,loc=mu0),color='magenta',alpha=1) ax.arrow(0,.4,mu0,0,head_width=0.05) ax.arrow(mu0,.4,-mu0,0,head_width=0.05) ax.text(mu0/2,.45,r'$\delta$',fontsize=20) ax.set_xlabel('t') ax.set_ylabel(r'sampling distribution') ax.set_ylim((0,0.8)) box_off(ax) fig.savefig('figs/experimentalDesign01.pdf')