import numpy as np import scipy.stats as st import matplotlib.pyplot as plt # normal distribution: x = np.arange( -3.0, 3.0, 0.01 ) g = np.exp(-0.5*x*x)/np.sqrt(2.0*np.pi) plt.xkcd() fig = plt.figure( figsize=(6,3) ) ax = fig.add_subplot(1, 2, 1) ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) ax.yaxis.set_ticks_position('left') ax.xaxis.set_ticks_position('bottom') ax.set_xlabel( 'x' ) ax.set_ylabel( 'Prob. density p(x)' ) ax.set_ylim( 0.0, 0.46 ) ax.set_yticks( np.arange( 0.0, 0.45, 0.1 ) ) ax.text(-1.0, 0.06, '50%', ha='center' ) ax.text(+1.0, 0.06, '50%', ha='center' ) ax.annotate('Median\n= mean', xy=(0.1, 0.3), xycoords='data', xytext=(1.2, 0.35), textcoords='data', ha='left', arrowprops=dict(arrowstyle="->", relpos=(0.0,0.2), connectionstyle="angle3,angleA=10,angleB=40") ) ax.annotate('Mode', xy=(-0.1, 0.4), xycoords='data', xytext=(-2.5, 0.43), textcoords='data', ha='left', arrowprops=dict(arrowstyle="->", relpos=(0.0,0.2), connectionstyle="angle3,angleA=10,angleB=120") ) ax.fill_between( x[x<0], 0.0, g[x<0], color='#ffcc00' ) ax.fill_between( x[x>0], 0.0, g[x>0], color='#99ff00' ) ax.plot(x, g, 'b', lw=4) ax.plot([0.0, 0.0], [0.0, 0.45], 'k', lw=2 ) # normal distribution: x = np.arange( 0.0, 6.0, 0.01 ) shape = 2.0 g = st.gamma.pdf(x, shape) m = st.gamma.median(shape) gm = st.gamma.mean(shape) ax = fig.add_subplot(1, 2, 2) ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) ax.yaxis.set_ticks_position('left') ax.xaxis.set_ticks_position('bottom') ax.set_xlabel( 'x' ) ax.set_ylabel( 'Prob. density p(x)' ) ax.set_ylim( 0.0, 0.46 ) ax.set_yticks( np.arange( 0.0, 0.45, 0.1 ) ) ax.text(m-0.8, 0.06, '50%', ha='center' ) ax.text(m+1.2, 0.06, '50%', ha='center' ) ax.annotate('Median', xy=(m+0.1, 0.2), xycoords='data', xytext=(m+1.6, 0.25), textcoords='data', ha='left', arrowprops=dict(arrowstyle="->", relpos=(0.0,0.5), connectionstyle="angle3,angleA=30,angleB=70") ) ax.annotate('Mean', xy=(gm, 0.01), xycoords='data', xytext=(gm+1.8, 0.15), textcoords='data', ha='left', arrowprops=dict(arrowstyle="->", relpos=(0.0,0.5), connectionstyle="angle3,angleA=0,angleB=90") ) ax.annotate('Mode', xy=(1.0, 0.38), xycoords='data', xytext=(1.8, 0.42), textcoords='data', ha='left', arrowprops=dict(arrowstyle="->", relpos=(0.0,0.5), connectionstyle="angle3,angleA=0,angleB=70") ) ax.fill_between( x[xm], 0.0, g[x>m], color='#99ff00' ) ax.plot(x, g, 'b', lw=4) ax.plot([m, m], [0.0, 0.38], 'k', lw=2 ) #ax.plot([gm, gm], [0.0, 0.42], 'k', lw=2 ) plt.tight_layout() fig.savefig( 'median.pdf' ) #plt.show()