\documentclass[12pt,a4paper,pdftex]{exam} \usepackage[german]{babel} \usepackage{natbib} \usepackage{graphicx} \usepackage[small]{caption} \usepackage{sidecap} \usepackage{pslatex} \usepackage{amsmath} \usepackage{amssymb} \setlength{\marginparwidth}{2cm} \usepackage[breaklinks=true,bookmarks=true,bookmarksopen=true,pdfpagemode=UseNone,pdfstartview=FitH,colorlinks=true,citecolor=blue]{hyperref} %%%%% text size %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \usepackage[left=20mm,right=20mm,top=25mm,bottom=25mm]{geometry} \pagestyle{headandfoot} \header{{\bfseries\large Exercise 3}}{{\bfseries\large Matrices}}{{\bfseries\large 22. Oktober, 2019}} \firstpagefooter{Dr. Jan Grewe}{Phone: 29 74588}{Email: jan.grewe@uni-tuebingen.de} \runningfooter{}{\thepage}{} \setlength{\baselineskip}{15pt} \setlength{\parindent}{0.0cm} \setlength{\parskip}{0.3cm} \renewcommand{\baselinestretch}{1.15} \newcommand{\code}[1]{\texttt{#1}} \renewcommand{\solutiontitle}{\noindent\textbf{Solutions:}\par\noindent} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{document} \vspace*{-6.5ex} \begin{center} \textbf{\Large Introduction to Scientific Computing}\\[1ex] {\large Jan Grewe, Jan Benda}\\[-3ex] Neuroethology \hfill --- \hfill Institute for Neurobiology \hfill --- \hfill \includegraphics[width=0.28\textwidth]{UT_WBMW_Black_RGB} \\ \end{center} The exercises are meant for self-monitoring and revision of the lecture. You should try to solve them on your own. Your solution should be submitted as a single script (m-file) in the Ilias system. Each task should be solved in its own ``cell''. Each cell must be executable on its own. The file should be named according to the following pattern: ``matrices\_\{lastname\}.m''(e.g. matrices\_mueller.m). \begin{questions} \question Create the following matrix: \[ A = \left( \begin{array}{ccc} 7 & 3 & 5 \\ 1 & 8 & 3 \\ 8 & 6 & 4 \end{array} \right) \] \begin{parts} \part Use the function \code{size} to check for its size. \begin{solution} \code{x = [7 3 5; 1 8 3; 8 6 4];\\disp(size(x))} \end{solution} \part Use the help to figure out how to get only the size along a certain dimension. Display the sizes of each dimension. \begin{solution} \code{disp(size(x, 1))}\\\code{disp(size(x, 2))} \end{solution} \part Copy the content at the position 3rd line, 2nd column to a new variable. \begin{solution} \code{c = x(3, 2)} \end{solution} \part Display all elements of the 1st, 2nd and 3rd line. \begin{solution} \code{disp(x([1 2 3], :));} \end{solution} \part Display all elements of the 1st, 2nd, and 3rd column. \begin{solution} \code{disp(x(:, 1))\\ disp(x(:, 2))\\ disp(x(:, 3))} \end{solution} \part Increment all elements of the 2nd line and the 3rd column about 1 (reassign the result to the respective elements). \begin{solution} \code{x(2,:) = x(2,:) + 1;}\\ \code{x(:,3) = x(:,3) + 1;} \end{solution} \part Subtract five from all elements of the 1st line. \begin{solution} \code{x(1,:) = x(1,:) - 5;} \end{solution} \part Multiply all elements of the 3rd column by 2. \begin{solution} \code{x(:,3) = x(:,3) .* 2;} \end{solution} \end{parts} \question Create a $5 \times 5$ matrix \code{M} that contains random numbers (use the function \verb+randn()+. Use the help to find out what it does). \begin{parts} \part Display the content of \code{M} at position 2nd line and 3rd column. \begin{solution} \code{M = randn(5, 5);} \code{disp(M(2,3))} \end{solution} \part Display all elements of the 1st, 3rd and last line. \begin{solution} \code{disp(M(1,:)) \\ disp(M(3,:))\\ disp(M(size(M,1), :))} \end{solution} \part Display the elements of the 2nd and 4th column. \begin{solution} \code{disp(M(:,2))\\ disp(M(:,4))} \end{solution} \part Select with a single command all elements of every 2nd column and store them in a new variable. \begin{solution} \code{y = M(:, [2:2:size(M,2)])} \end{solution} \part Calculate the averages of lines 1, 3, and 5 (use the function \verb+mean+}, see help). \begin{solution} \code{mean(M([1 3 5],:), 2)} \end{solution} \part Calculate the sum of all elements in the 2nd and 4th column (function \code{sum}, see help). \begin{solution} \code{sum(M(:, [2 4]), 1)} \end{solution} \part Calculate the total sum of all elements in \code{M} \begin{solution} \code{sum(M(:))} \end{solution} \part Replace all elements of the 2nd line with those of the 4th line. \begin{solution} \code{M(2,:) = M(4,:)} \end{solution} \part Execute the following command: \code{M(1:2,1) = [1, 2, 3]}. What could have been intended by the command and what does the error message tell? \begin{solution} \code{M(1:2,1) = [1, 2,3];\\ Subscripted assignment dimension mismatch.} \\ Der einzuf\"ugende Vektor hat 3 Elemente, die Auswahl von M in die geschrieben werden soll hat nur die Gr\"o{\ss}e 2; \end{solution} \end{parts} \question Indexing in matrices can use the \textit{subscript} indices or the \textit{linear} indices (you may want to check the help for the functions \verb+sub2ind+ and \verb+ind2sub+). \begin{parts} \part Create a 2-D matrix filled with random numbers and the size \verb+[10,10]+. \begin{solution} \code{x = randn(10, 10)} \end{solution} \part How many elements are stored in it? \begin{solution} \code{disp(numel(x))} \end{solution} \part Employ linear indexing to select 50 random values. \begin{solution} \code{x(randi(100, 50, 1)])} \end{solution} \part Can you imagine an advantage of using linear instead of subscript indexing? \begin{solution} Die Matrize ist 2-dimensional. Wenn mit dem subscript index zugegriffen werden soll, dann muss auf die Dimensionen einzeln geachtet werden. Mit dem linearen Indexieren kann einfach einen Vektor mit n Indices benutzt werden. Wenn es auch noch eine eindeutige (ohne doppelte) Auswahl sein soll, dann muss bei 2-D viel komplexer kontrollieren. \end{solution} \part Calculate the total sum of all elements with a single command. \begin{solution} \code{sum(x(:))} or \code{sum(sum(x))} \end{solution} \end{parts} \question Create three variables \verb+x = [1 5 9]+ and \verb+y = [7 1 5]+ and \verb+M = [3 1 6; 5 2 7]+. Which of the following commands will pass? Which command will fail? If it fails, why? Test your predictions. \begin{parts} \part \code{x + y} \begin{solution} works! \end{solution} \part \code{x * M} \begin{solution} Matrixmultiplication will not work! Inner dimensions must agree! \end{solution} \part \code{x + y'} \begin{solution} Fail! Dimensionalities do not match. \end{solution} \part \code{M - [x y]} \begin{solution} Fail! \code{[x y] is a line vector of length 6, M is a martix.} \end{solution} \part \code{[x; y]} \begin{solution} Works! Size: 2 3 \end{solution} \part \code{M - [x; y]} \begin{solution} Works! \end{solution} \end{parts} \question Create a 3-D matrix from two 2-D matrices. Use the function \code{cat} (check the help to learn its usage). \begin{parts} \part Select all elements of the first ``page'' (index 1 in the 3. dimension). \begin{solution} \code{x = randn(5,5); \\y = randn(5, 5);\\ z = cat(3, x, y);\\disp(z(:,:,1))} \end{solution} \end{parts} \question Create a $5 \times 5 \times 5$ matrix of random numbers that have been drawn from a uniform distribution. Values should be in the range 0 and 100. \begin{parts} \part Calculate the average of each ``page'' (function \verb+mean()+, see help). \begin{solution} \code{x = round(rand(5,5,5) .* 100);\\ disp(mean(mean(x(:,:,1))))\\ disp(mean(mean(x(:,:,2)))) \\ disp(mean(mean(x(:,:,3))))} \end{solution} \end{parts} \end{questions} \end{document}