% plot Gaussian pdf: dx=0.1; x = [-4.0:dx:4.0]; p = exp(-0.5*x.^2)/sqrt(2.0*pi); hold on plot(x, p, 'linewidth', 10) % show area of integral: area(x((x>=x1)&(x<=x2)), p((x>=x1)&(x<=x2)), 'FaceColor', 'r' ) hold off % compute integral between x1 and x2: x1=1.0; x2=2.0; P = sum(p((x>=x1)&(x<x2)))*dx; disp( [ 'The integral between ', num2str(x1, 1), ' and ', num2str(x2, 1), ' is ', num2str(P, 3) ] ); % draw random numbers: %r = randn( 10000, 1 ); %hist(r,x,1.0/dx) % check P: Pr = sum((r>=x1)&(r<x2))/length(r); disp( [ 'The probability of getting a number between ', num2str(x1, 1), ' and ', num2str(x2, 1), ' is ', num2str(Pr, 3) ] ); % infinite integral: P = sum(p)*dx; disp( [ 'The integral between -infinity and +infinity is ', num2str(P, 3) ] ); disp( [ 'I.e. the probability to get any number is ', num2str(P, 3) ] );