import sys import seaborn as sns sys.path.append('/home/fabee/code') from matplotlib.pyplot import * from scipy import stats from numpy import * sns.set_context("talk", font_scale=1.5, rc={"lines.linewidth": 2.5}) # define the curves x = np.linspace(2, 20, 200) n = 16. X =random.randn(n)*4.+12.5 fig = figure() ax = fig.add_subplot(111) ax.set_xlim(5, 18) #ax.set_ylim(0, .5) ax.plot([10,10],[-.2,.2],'k-',lw=2) ax.text(10,.3,r'stimulus position',rotation=-30); ax.plot([12.5,12.5],[-.2,.2],'b-',lw=2) ax.text(12.5,.3,r'$\hat\mu$',rotation=-45); ax.set_xlabel('x eye position') #XKCDify(ax, expand_axes=True,yaxis_loc=0,xaxis_loc=0) ax.plot(X,0*X,'ob',label='fixations',mfc='orange',ms=10) fig.savefig('figs/repetition0.png') # ####################################################3 fig = figure() ax = fig.add_subplot(111) ax.plot(x,-stats.norm.pdf(x,loc=10,scale=4),'orange',label=r'Null distribution of x') ax.set_xlim(5, 18) # ax.set_ylim(0, .5) ax.plot([10,10],[-.2,.2],'k-',lw=2) ax.text(10,.3,r'stimulus position',rotation=-30); ax.plot([12.5,12.5],[-.2,.2],'b-',lw=2) ax.text(12.5,.3,r'$\hat\mu$',rotation=-45); ax.legend() ax.set_xlabel('x eye position') #XKCDify(ax, expand_axes=True,yaxis_loc=0,xaxis_loc=0) ax.plot(X,0*X,'ob',label='fixations',mfc='orange',ms=10) fig.savefig('figs/repetition1.png') # ####################################################3 fig = figure() ax = fig.add_subplot(111) ax.plot(x,-stats.norm.pdf(x,loc=10,scale=4),'orange',label=r'Null distribution of x') ax.plot(x,-stats.t.pdf(x,n-1,loc=10,scale=1),'b',label=r'Null distribution of $t$') ax.set_xlim(5, 18) # ax.set_ylim(0, .5) ax.plot([10,10],[-.2,.2],'k-',lw=2) ax.text(10,.3,r'stimulus position',rotation=-30); ax.plot([12.5,12.5],[-.2,.2],'b-',lw=2) ax.text(12.5,.3,r'$\hat\mu$',rotation=-45); ax.legend() ax.set_xlabel('x eye position') #XKCDify(ax, expand_axes=True,yaxis_loc=0,xaxis_loc=0) ax.plot(X,0*X,'ob',label='fixations',mfc='orange',ms=10) fig.savefig('figs/repetition2.png') # ####################################################3 fig = figure() ax = fig.add_subplot(111) xx = linspace(stats.norm.ppf(0.05),stats.norm.ppf(1-0.05),100) xx += 10. yy = -stats.norm.pdf(xx,loc=10.,scale=1) xx = hstack((xx[0],xx,xx[-1])) yy = hstack((0,yy,0)) ax.plot(x,-stats.norm.pdf(x,loc=10,scale=4),'orange',label=r'Null distribution of x') ax.plot(x,-stats.t.pdf(x,n-1,loc=10,scale=1),'b',label=r'Null distribution of $t$') ax.fill(xx,yy,'c') ax.set_xlim(5, 18) # ax.set_ylim(0, .5) ax.plot([10,10],[-.2,.2],'k-',lw=2) ax.text(10,.3,r'stimulus position',rotation=-30); ax.plot([12.5,12.5],[-.2,.2],'b-',lw=2) ax.text(12.5,.3,r'$\hat\mu$',rotation=-45); ax.legend() ax.set_xlabel('x eye position') #XKCDify(ax, expand_axes=True,yaxis_loc=0,xaxis_loc=0) ax.plot(X,0*X,'ob',label='fixations',mfc='orange',ms=10) fig.savefig('figs/repetition3.png') # ####################################################3 fig = figure() ax = fig.add_subplot(111) xx = linspace(stats.norm.ppf(0.05),stats.norm.ppf(1-0.05),100) xx += 10. yy = -stats.norm.pdf(xx,loc=10.,scale=1) xx = hstack((xx[0],xx,xx[-1])) yy = hstack((0,yy,0)) ax.plot(x,-stats.norm.pdf(x,loc=10,scale=4),'orange',label=r'Null distribution of x') ax.plot(x,-stats.t.pdf(x,n-1,loc=10,scale=1),'b',label=r'Null distribution of $t$') ax.fill(xx,yy,'c') ax.set_xlim(5, 18) # ax.set_ylim(0, .5) ax.plot([10,10],[-.2,.2],'k-',lw=2) ax.text(10,.3,r'stimulus position',rotation=-30); ax.plot([12.5,12.5],[-.2,.2],'b-',lw=2) ax.text(12.5,.3,r'$\hat\mu$',rotation=-45) ax.plot([xx[0],xx[-1]],[0,0],'-g',label=r'$H_0$',lw=4) ax.plot([0,xx[0]],[0,0],'-r',label=r'$H_1$',lw=4) ax.plot([xx[-1],20],[0,0],'-r',lw=4) ax.legend() ax.set_xlabel('x eye position') #XKCDify(ax, expand_axes=True,yaxis_loc=0,xaxis_loc=0) ax.plot(X,0*X,'ob',label='fixations',mfc='orange',ms=10) fig.savefig('figs/repetition4.png') # ####################################################3 fig = figure() ax = fig.add_subplot(111) ax.plot(x,-stats.norm.pdf(x,loc=10,scale=4),'orange',label=r'Null distribution of x') ax.plot(x,-stats.t.pdf(x,n-1,loc=10,scale=1),'b',label=r'Null distribution of $t$') xx = linspace(0,stats.norm.ppf(0.05)+10.,100) yy = -stats.norm.pdf(xx,loc=10.,scale=1) xx = hstack((xx[0],xx,xx[-1])) yy = hstack((0,yy,0)) ax.fill(xx,yy,'magenta') xx = linspace(stats.norm.ppf(1-0.05)+10.,20,100) yy = -stats.norm.pdf(xx,loc=10.,scale=1) xx = hstack((xx[0],xx,xx[-1])) yy = hstack((0,yy,0)) ax.fill(xx,yy,'magenta') ax.set_xlim(5, 18) # ax.set_ylim(0, .5) ax.plot([10,10],[-.2,.2],'k-',lw=2) ax.text(10,.3,r'stimulus position',rotation=-30); ax.plot([12.5,12.5],[-.2,.2],'b-',lw=2) ax.text(12.5,.3,r'$\hat\mu$',rotation=-45); ax.legend() ax.set_xlabel('x eye position') #XKCDify(ax, expand_axes=True,yaxis_loc=0,xaxis_loc=0) ax.plot(X,0*X,'ob',label='fixations',mfc='orange',ms=10) fig.savefig('figs/repetition5.png')