import numpy as np import matplotlib.pyplot as plt from plotstyle import * # normal distribution: x = np.arange( -4.0, 4.0, 0.01 ) g = np.exp(-0.5*x*x)/np.sqrt(2.0*np.pi) q = [ -0.67488, 0.0, 0.67488 ] fig, ax = plt.subplots(figsize=cm_size(figure_width, 1.0*figure_height)) fig.subplots_adjust(**adjust_fs(bottom=2.7, top=0.1)) ax.set_xlabel('x') ax.set_ylabel('Probability density p(x)') ax.set_ylim(0.0, 0.46) ax.set_yticks(np.arange(0.0, 0.45, 0.1)) ax.text(-1.2, 0.1, '25%', ha='center' ) ax.text(-0.35, 0.1, '25%', ha='center' ) ax.text(+0.35, 0.1, '25%', ha='center' ) ax.text(+1.2, 0.1, '25%', ha='center' ) ax.annotate('1. quartile', xy=(-0.75, 0.2), xycoords='data', xytext=(-1.7, 0.25), textcoords='data', ha='right', arrowprops=dict(arrowstyle="->", relpos=(1.0,0.5), connectionstyle="angle3,angleA=170,angleB=120") ) ax.annotate('3. quartile', xy=(0.75, 0.17), xycoords='data', xytext=(1.7, 0.22), textcoords='data', ha='left', arrowprops=dict(arrowstyle="->", relpos=(0.0,0.5), connectionstyle="angle3,angleA=10,angleB=70") ) ax.annotate('Median', xy=(0.1, 0.3), xycoords='data', xytext=(1.6, 0.35), textcoords='data', ha='left', arrowprops=dict(arrowstyle="->", relpos=(0.0,0.5), connectionstyle="angle3,angleA=10,angleB=40") ) ax.fill_between( x[xq[0])&(xq[0])&(xq[1])&(xq[1])&(xq[2]], 0.0, g[x>q[2]], **fsEs) ax.plot(x,g, **lsA) ax.plot([0.0, 0.0], [0.0, 0.45], **lsMarker) ax.plot([q[0], q[0]], [0.0, 0.4], **lsMarker) ax.plot([q[2], q[2]], [0.0, 0.4], **lsMarker) fig.savefig( 'quartile.pdf' )