\documentclass[addpoints,11pt]{exam}
\usepackage{url}
\usepackage{color}
\usepackage{hyperref}

\pagestyle{headandfoot}
\runningheadrule
\firstpageheadrule
\firstpageheader{Scientific Computing}{Project Assignment}{11/05/2014
  -- 11/06/2014}
%\runningheader{Homework 01}{Page \thepage\ of \numpages}{23. October 2014}
\firstpagefooter{}{}{}
\runningfooter{}{}{}
\pointsinmargin
\bracketedpoints

%\printanswers
%\shadedsolutions


\begin{document}
%%%%%%%%%%%%%%%%%%%%% Submission instructions %%%%%%%%%%%%%%%%%%%%%%%%%
\sffamily
% \begin{flushright}
% \gradetable[h][questions]
% \end{flushright}

\begin{center}
  \input{../disclaimer.tex}
\end{center}

%%%%%%%%%%%%%% Questions %%%%%%%%%%%%%%%%%%%%%%%%%
\section*{Reverse reconstruction of the stimulus evoking neuronal responses.}
During the course we have used the Spike-Triggered-Average to
reconstruct the stimulus
\begin{questions}
  \question .
  \begin{parts}
    \part Estimate the STA and plot it for each of the cells.
    \part Implement a function that estimates the reconstruction 
    error using the mean-square-error and express it relative to the
    variance of the original stimulus.
    \begin{equation}
      err = \frac{1}{N} \cdot \displaystyle\sum^{N}_{i=1}(x_i - \bar{x}),
    \end{equation}
    with $N$ the number of data points, $x_i$ the current value and
    $\bar{x}$, the average of all $x$.
    \part Analyze the robustness of the reconstruction. Estimate 
    the STA with less and less data and estimate the reconstruction
    error.
    \part Plot the reconstruction error as a function of the data 
    amount used to estimate the STA.
    \part Apply the STA estimated for one neuron to reconstruct 
    the stimulus another neuron has seen.
  \end{parts}
\end{questions}

\end{document}