%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \chapter{\tr{Point processes}{Punktprozesse}} \begin{figure}[t] \texpicture{pointprocessscetchB} \caption{\label{pointprocessscetchfig}Ein Punktprozess ist eine Abfolge von Zeitpunkten $t_i$ die auch durch die Intervalle $T_i=t_{i+1}-t_i$ oder die Anzahl der Ereignisse $n_i$ beschrieben werden kann. } \end{figure} Ein zeitlicher Punktprozess ist ein stochastischer Prozess, der eine Abfolge von Ereignissen zu den Zeiten $\{t_i\}$, $t_i \in \reZ$, generiert. Jeder Punktprozess wird durch einen sich in der Zeit kontinuierlich entwickelnden Prozess generiert. Wann immer dieser Prozess eine Schwelle \"uberschreitet wird ein Ereigniss des Punktprozesses erzeugt. Zum Beispiel: \begin{itemize} \item Aktionspotentiale/Herzschlag: wird durch die Dynamik des Membranpotentials eines Neurons/Herzzelle erzeugt. \item Erdbeben: wird durch die Dynamik des Druckes zwischen tektonischen Platten auf beiden Seiten einer geologischen Verwerfung erzeugt. \item Zeitpunkt eines Grillen/Frosch/Vogelgesangs: wird durch die Dynamik des Nervensystems und des Muskelapparates erzeugt. \end{itemize} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{Rate eines Punktprozesses} Rate of events $r$ (``spikes per time'') measured in Hertz. \begin{itemize} \item Number of events $N$ per observation time $W$: $r = \frac{N}{W}$ \item Without boundary effects: $r = \frac{N-1}{t_N-t_1}$ \item Inverse interval: $r = \frac{1}{\mu_{ISI}}$ \end{itemize} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{Intervall Statistiken} \begin{figure}[t] \includegraphics[width=0.45\textwidth]{poissonisih100hz}\hfill \includegraphics[width=0.45\textwidth]{lifisih16} \caption{\label{isihfig}Interspike-Intervall Histogramme von einem Poisson Prozess (links) und einem Integrate-and-Fire Neuron (rechts).} \end{figure} \subsection{First order (Interspike) interval statistics} \begin{itemize} \item Histogram $p(T)$ of intervals $T$. Normalized to $\int_0^{\infty} p(T) \; dT = 1$ \item Mean interval $\mu_{ISI} = \langle T \rangle = \frac{1}{n}\sum\limits_{i=1}^n T_i$ \item Variance of intervals $\sigma_{ISI}^2 = \langle (T - \langle T \rangle)^2 \rangle$\vspace{1ex} \item Coefficient of variation $CV_{ISI} = \frac{\sigma_{ISI}}{\mu_{ISI}}$ \item Diffusion coefficient $D_{ISI} = \frac{\sigma_{ISI}^2}{2\mu_{ISI}^3}$ \end{itemize} \subsection{Interval return maps} Scatter plot between succeeding intervals separated by lag $k$. \begin{figure}[t] \begin{minipage}[t]{0.49\textwidth} LIF $I=10$, $\tau_{adapt}=100$\,ms:\\ \includegraphics[width=1\textwidth]{lifadaptreturnmap10-100ms} \end{minipage} \hfill \begin{minipage}[t]{0.49\textwidth} LIF $I=15.7$, $\tau_{OU}=100$\,ms:\\ \includegraphics[width=1\textwidth]{lifoureturnmap16-100ms} \end{minipage} \caption{\label{returnmapfig}Interspike-Intervall return maps.} \end{figure} \subsection{Serial correlations of the intervals} Correlation coefficients between succeeding intervals separated by lag $k$: \[ \rho_k = \frac{\langle (T_{i+k} - \langle T \rangle)(T_i - \langle T \rangle) \rangle}{\langle (T_i - \langle T \rangle)^2\rangle} = \frac{{\rm cov}(T_{i+k}, T_i)}{{\rm var}(T_i)} \] $\rho_0=1$ (correlation of each interval with itself). \begin{figure}[t] \begin{minipage}[t]{0.49\textwidth} LIF $I=10$, $\tau_{adapt}=100$\,ms:\\ \includegraphics[width=1\textwidth]{lifadaptserial10-100ms} \end{minipage} \hfill \begin{minipage}[t]{0.49\textwidth} LIF $I=15.7$, $\tau_{OU}=100$\,ms:\\ \includegraphics[width=1\textwidth]{lifouserial16-100ms} \end{minipage} \caption{\label{serialcorrfig}Serial correlations.} \end{figure} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{Count statistics} \begin{figure}[t] \includegraphics[width=0.48\textwidth]{poissoncounthist100hz10ms}\hfill \includegraphics[width=0.48\textwidth]{poissoncounthist100hz100ms} \caption{\label{countstatsfig}Count Statistik.} \end{figure} Histogram of number of events $N$ (counts) within observation window of duration $W$. \subsection{Fano factor} \begin{figure}[t] \begin{minipage}[t]{0.49\textwidth} Poisson process $\lambda=100$\,Hz:\\ \includegraphics[width=1\textwidth]{poissonfano100hz} \end{minipage} \hfill \begin{minipage}[t]{0.49\textwidth} LIF $I=10$, $\tau_{adapt}=100$\,ms:\\ \includegraphics[width=1\textwidth]{lifadaptfano10-100ms} \end{minipage} \caption{\label{fanofig}Fano factor.} \end{figure} Statistics of number of events $N$ within observation window of duration $W$. \begin{itemize} \item Mean count: $\mu_N = \langle N \rangle$ \item Count variance: $\sigma_N^2 = \langle (N - \langle N \rangle)^2 \rangle$ \item Fano factor (variance divided by mean): $F = \frac{\sigma_N^2}{\mu_N}$ \end{itemize} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{\tr{Homogeneous Poisson process}{Homogener Poisson Prozess}} \begin{figure}[t] \includegraphics[width=1\textwidth]{poissonraster100hz} \caption{\label{hompoissonfig}Rasterplot von Poisson-Spikes.} \end{figure} The probability $p(t)\delta t$ of an event occuring at time $t$ is independent of $t$ and independent of any previous event (independent of event history). The probability $P$ for an event occuring within a time bin of width $\Delta t$ is \[ P=\lambda \cdot \Delta t \] for a Poisson process with rate $\lambda$. \subsection{Statistics of homogeneous Poisson process} \begin{figure}[t] \includegraphics[width=0.45\textwidth]{poissonisihexp20hz}\hfill \includegraphics[width=0.45\textwidth]{poissonisihexp100hz} \caption{\label{hompoissonisihfig}Interspike interval histograms of poisson spike train.} \end{figure} \begin{itemize} \item Exponential distribution of intervals $T$: $p(T) = \lambda e^{-\lambda T}$ \item Mean interval $\mu_{ISI} = \frac{1}{\lambda}$ \item Variance of intervals $\sigma_{ISI}^2 = \frac{1}{\lambda^2}$ \item Coefficient of variation $CV_{ISI} = 1$ \item Serial correlation $\rho_k =0$ for $k>0$ (renewal process!) \item Fano factor $F=1$ \end{itemize} \subsection{Count statistics of Poisson process} \begin{figure}[t] \includegraphics[width=0.48\textwidth]{poissoncounthistdist100hz10ms}\hfill \includegraphics[width=0.48\textwidth]{poissoncounthistdist100hz100ms} \caption{\label{hompoissoncountfig}Count statistics of poisson spike train.} \end{figure} Poisson distribution: \[ P(k) = \frac{(\lambda W)^ke^{\lambda W}}{k!} \]