import numpy as np import scipy.stats as st import matplotlib.pyplot as plt from plotstyle import * # normal distribution: x = np.arange(-3.0, 3.0, 0.01) g = np.exp(-0.5*x*x)/np.sqrt(2.0*np.pi) fig, (ax1, ax2) = plt.subplots(1, 2) fig.subplots_adjust(**adjust_fs(bottom=2.7, top=0.1)) ax1.set_xlabel('x') ax1.set_ylabel('Prob. density p(x)') ax1.set_ylim(0.0, 0.46) ax1.set_yticks(np.arange(0.0, 0.45, 0.1)) ax1.text(-1.0, 0.06, '50%', ha='center') ax1.text(+1.0, 0.06, '50%', ha='center') ax1.annotate('Median\n= mean', xy=(0.1, 0.3), xycoords='data', xytext=(1.2, 0.35), textcoords='data', ha='left', arrowprops=dict(arrowstyle="->", relpos=(0.0,0.2), connectionstyle="angle3,angleA=10,angleB=40")) ax1.annotate('Mode', xy=(-0.1, 0.4), xycoords='data', xytext=(-2.5, 0.43), textcoords='data', ha='left', arrowprops=dict(arrowstyle="->", relpos=(0.0,0.2), connectionstyle="angle3,angleA=10,angleB=120")) ax1.fill_between(x[x<0], 0.0, g[x<0], **fsCs) ax1.fill_between(x[x>0], 0.0, g[x>0], **fsFs) ax1.plot(x, g, **lsA) ax1.plot([0.0, 0.0], [0.0, 0.45], **lsMarker) # gamma distribution: x = np.arange(0.0, 6.0, 0.01) shape = 2.0 g = st.gamma.pdf(x, shape) m = st.gamma.median(shape) gm = st.gamma.mean(shape) ax2.set_xlabel('x') ax2.set_ylabel('Prob. density p(x)') ax2.set_ylim(0.0, 0.46) ax2.set_yticks(np.arange(0.0, 0.45, 0.1)) ax2.text(m-0.8, 0.06, '50%', ha='center') ax2.text(m+1.2, 0.06, '50%', ha='center') ax2.annotate('Median', xy=(m+0.1, 0.2), xycoords='data', xytext=(m+1.6, 0.25), textcoords='data', ha='left', arrowprops=dict(arrowstyle="->", relpos=(0.0,0.5), connectionstyle="angle3,angleA=30,angleB=70")) ax2.annotate('Mean', xy=(gm, 0.01), xycoords='data', xytext=(gm+1.8, 0.15), textcoords='data', ha='left', arrowprops=dict(arrowstyle="->", relpos=(0.0,0.5), connectionstyle="angle3,angleA=0,angleB=90")) ax2.annotate('Mode', xy=(1.0, 0.38), xycoords='data', xytext=(1.8, 0.42), textcoords='data', ha='left', arrowprops=dict(arrowstyle="->", relpos=(0.0,0.5), connectionstyle="angle3,angleA=0,angleB=70")) ax2.fill_between(x[xm], 0.0, g[x>m], **fsFs) ax2.plot(x, g, **lsA) ax2.plot([m, m], [0.0, 0.38], **lsMarker) #ax2.plot([gm, gm], [0.0, 0.38], **lsMarker) fig.savefig('median.pdf')