import numpy as np import matplotlib.pyplot as plt from plotstyle import * # data: rng = np.random.RandomState(981) data = rng.randn(100) xs = np.sort(data) cdf = np.arange(len(xs))/float(len(xs)) # Gauss: dx = 0.01 xx = np.arange(-4.0, 4.0, dx) gauss = np.exp(-0.5*xx*xx)/np.sqrt(2.0*np.pi) gausscdf = np.cumsum(gauss)*dx # plot: fig, ax = plt.subplots(figsize=cm_size(figure_width, 1.2*figure_height)) ax.set_xlabel('x') ax.set_xlim(-3.2, 3.2) ax.set_xticks(np.arange(-3.0, 3.1, 1.0)) ax.set_ylabel('F(x)') ax.set_ylim(-0.05, 1.05) ax.set_yticks(np.arange(0.0, 1.1, 0.2)) med = xs[cdf>=0.5][0] ax.plot([-3.2, med, med], [0.5, 0.5, 0.0], zorder=-5, **lsSpine) ax.text(-2.8, 0.55, 'F=0.5') ax.text(0.15, 0.25, 'median at %.2f' % med) q3 = xs[cdf>=0.75][0] ax.plot([-3.2, q3, q3], [0.75, 0.75, 0.0], zorder=-5, **lsSpine) ax.text(-2.8, 0.8, 'F=0.75') ax.text(0.8, 0.5, '3. quartile at %.2f' % q3) p = cdf[xs>=-1.0][0] ax.plot([-3.2, -1.0, -1.0], [p, p, 0.0], zorder=-5, **lsSpine) ax.text(-2.8, 0.2, 'F=%.2f' % p) ax.text(-0.9, 0.05, '-1') ax.plot(xx, gausscdf, zorder=-1, **lsAm) ax.plot(xs, cdf, zorder=-1, **lsB) ax.plot([-3.2, 3.2], [1.0, 1.0], zorder=-10, **lsGrid) fig.savefig('cumulative.pdf')