% getting familiar with the randn() function: randn(1, 3) randn(3, 1) randn(2, 4) % simulate tiger weights: mu = 220.0; % mean and ... sigma = 40.0; % ... standard deviation of the tigers in kg for n = [100, 10000] fprintf('\nn=%d:\n', n) for i = 1:5 x = sigma*randn(n, 1) + mu; % weights of n tigers fprintf(' m=%3.0fkg, std=%3.0fkg\n', mean(x), std(x)) end end % plot the data: plot(x(1:1000), 'o') xlabel('Index') ylabel('Weight [kg]')