Merge branch 'master' of whale.am28.uni-tuebingen.de:scientificComputing

This commit is contained in:
Jan Grewe 2018-01-31 12:06:42 +01:00
commit f4716d8ea7
2 changed files with 123 additions and 39 deletions

View File

@ -0,0 +1,23 @@
function angle = maxlikelihoodangle(phases, gains, rates)
% maximum likelihood estimation of orientation
cosine = @(g,p,xdata)0.5*g.*(1.0+cos(2.0*pi*(xdata-p)/180.0));
angels = 0:1.0:180.0;
loglikelihoods = zeros(length(phases), length(angels));
for i=1:length(phases)
r = cosine(gains(i), phases(i), angels);
%%loglikelihoods(i, :) = exp(-0.5*((rates(i)-r)./(0.25*r)).^2.0)./sqrt(2.0*pi*(0.25*r).^2.0);
%loglikelihoods(i, :) = log(exp(-0.5*((rates(i)-r)./(0.25*r)).^2.0)./sqrt(2.0*pi*(0.25*r).^2.0));
loglikelihoods(i, :) = -0.5*((rates(i)-r)./(0.25*r)).^2.0 - 0.5*log(2.0*pi*(0.25*r).^2.0);
end
loglikelihood = sum(loglikelihoods, 1);
[m i] = max(loglikelihood);
angle = angels(i);
% plot(angels, loglikelihood);
% hold on;
% plot([angle angle], [-500 0], 'k')
% hold off;
% xlabel('angle');
% ylabel('likelihood');
% ylim([-500, 0]);
% pause( 0.2 );
end

View File

@ -1,24 +1,24 @@
close all
datapath = '../';
% datapath = '../code/';
datapath = '../data/';
files = dir(strcat(datapath, 'unit*.mat'));
for file = files'
a = load(strcat(datapath, file.name));
spikes = a.spikes;
angles = a.angles;
figure()
for k = 1:size(spikes, 1)
subplot(3, 4, k)
spikeraster(spikes(k,:), -0.2, 0.6);
end
end
% for file = files'
% a = load(strcat(datapath, file.name));
% spikes = a.spikes;
% angles = a.angles;
% figure()
% for k = 1:size(spikes, 1)
% subplot(3, 4, k)
% spikeraster(spikes(k,:), -0.2, 0.6);
% end
% end
%% tuning curves:
close all
cosine = @(p,xdata)0.5*p(1).*(1.0+cos(2.0*pi*(xdata/180.0-p(2))));
cosine = @(p,xdata)0.5*p(1).*(1.0+cos(2.0*pi*(xdata-p(2))/180.0));
files = dir(strcat(datapath, 'unit*.mat'));
phases = zeros(length(files), 1);
gains = zeros(length(files), 1);
figure()
for j = 1:length(files)
file = files(j);
@ -31,10 +31,10 @@ for j = 1:length(files)
rates(k) = r;
end
[mr, maxi] = max(rates);
p0 = [mr, angles(maxi)/180.0-0.5];
p0 = [mr, angles(maxi)];
%p = p0;
p = lsqcurvefit(cosine, p0, angles, rates');
phase = p(2)*180.0;
phase = p(2);
if phase > 180.0
phase = phase - 180.0;
end
@ -42,10 +42,12 @@ for j = 1:length(files)
phase = phase + 180.0;
end
phases(j) = phase;
gains(j) = p(1);
subplot(2, 3, j);
plot(angles, rates, 'b');
hold on;
plot(angles, cosine(p, angles), 'r');
a = 0:0.1:180;
plot(a, cosine(p, a), 'r');
hold off;
xlim([0.0 180.0])
ylim([0.0 50.0])
@ -57,12 +59,13 @@ end
a = load(strcat(datapath, 'population04.mat'));
spikes = a.spikes;
angle = a.angle;
unitphases = a.phases*180.0;
unitphases(unitphases>180.0) = unitphases(unitphases>180.0) - 180.0;
% unitphases = a.phases*180.0;
% unitphases(unitphases>180.0) = unitphases(unitphases>180.0) - 180.0;
figure();
subplot(1, 3, 1);
subplot(2, 2, 1);
angleestimates1 = zeros(size(spikes, 2), 1);
angleestimates2 = zeros(size(spikes, 2), 1);
angleestimates3 = zeros(size(spikes, 2), 1);
[x, inx] = sort(phases);
% loop over trials:
for j = 1:size(spikes, 2)
@ -76,35 +79,60 @@ for j = 1:size(spikes, 2)
angleestimates1(j) = popvecangle(phases, rates);
[m, i] = max(rates);
angleestimates2(j) = phases(i);
angleestimates3(j) = maxlikelihoodangle(phases, gains, rates);
end
xlabel('preferred angle')
ylabel('firing rate')
hold off;
subplot(1, 3, 2);
subplot(2, 2, 2);
hist(angleestimates1);
xlabel('stimulus angle')
subplot(1, 3, 3);
xlabel('population vector angle')
subplot(2, 2, 3);
hist(angleestimates2);
xlabel('stimulus angle')
xlabel('max. rate angle')
subplot(2, 2, 4);
hist(angleestimates3);
xlabel('max. likelihood angle')
angle
mean(angleestimates1)
mean(angleestimates2)
mean(angleestimates3)
%% read out robustness:
files = dir(strcat(datapath, 'population*.mat'));
angles = zeros(length(files), 1);
e1m = zeros(length(files), 1);
e1s = zeros(length(files), 1);
e2m = zeros(length(files), 1);
e2s = zeros(length(files), 1);
e1mm = zeros(length(files), 1);
e2mm = zeros(length(files), 1);
e3mm = zeros(length(files), 1);
e1sm = zeros(length(files), 1);
e1ss = zeros(length(files), 1);
e2sm = zeros(length(files), 1);
e2ss = zeros(length(files), 1);
e3sm = zeros(length(files), 1);
e3ss = zeros(length(files), 1);
for i = 1:length(files)
file = files(i);
a = load(strcat(datapath, file.name));
spikes = a.spikes;
angle = a.angle;
% multi trial estimates:
rates = zeros(size(spikes, 1), 1);
for k = 1:size(spikes, 1)
r = zeros(size(spikes, 2), 1);
for j = 1:size(spikes, 2)
r(j) = firingrate(spikes(k, j), 0.0, 0.2);
end
rates(k) = mean(r);
end
e1mm(i) = popvecangle(phases, rates);
[m, inx] = max(rates);
e2mm(i) = phases(inx);
e3mm(i) = maxlikelihoodangle(phases, gains, rates);
% single trial estimates:
angleestimates1 = zeros(size(spikes, 2), 1);
angleestimates2 = zeros(size(spikes, 2), 1);
angleestimates3 = zeros(size(spikes, 2), 1);
for j = 1:size(spikes, 2)
rates = zeros(size(spikes, 1), 1);
for k = 1:size(spikes, 1)
@ -114,19 +142,52 @@ for i = 1:length(files)
angleestimates1(j) = popvecangle(phases, rates);
[m, inx] = max(rates);
angleestimates2(j) = phases(inx);
angleestimates3(j) = maxlikelihoodangle(phases, gains, rates);
end
angles(i) = angle;
e1m(i) = mean(angleestimates1);
e1s(i) = std(angleestimates1);
e2m(i) = mean(angleestimates2);
e2s(i) = std(angleestimates2);
e1sm(i) = mean(angleestimates1);
e1ss(i) = std(angleestimates1);
e2sm(i) = mean(angleestimates2);
e2ss(i) = std(angleestimates2);
e3sm(i) = mean(angleestimates3);
e3ss(i) = std(angleestimates3);
end
x = 0:180.0;
figure();
subplot(1, 3, 1);
hold on;
plot(x, x, 'k');
scatter(angles, e1mm);
xlabel('stimulus angle')
ylabel('estimated angle (population vector)')
subplot(1, 3, 2);
hold on;
plot(x, x, 'k');
scatter(angles, e2mm);
xlabel('stimulus angle')
ylabel('estimated angle (maximum firing rate)')
subplot(1, 3, 3);
hold on;
plot(x, x, 'k');
scatter(angles, e3mm);
xlabel('stimulus angle')
ylabel('estimated angle (maximum likelihood)')
figure();
subplot(1, 2, 1);
scatter(angles, e1m);
xlabel('stimuluis angle')
ylabel('estimated angle')
subplot(1, 2, 2);
scatter(angles, e2m);
xlabel('stimuluis angle')
ylabel('estimated angle')
subplot(1, 3, 1);
hold on;
plot(x, x, 'k');
scatter(angles, e1sm);
xlabel('stimulus angle')
ylabel('estimated angle (population vector)')
subplot(1, 3, 2);
hold on;
plot(x, x, 'k');
scatter(angles, e2sm);
xlabel('stimulus angle')
ylabel('estimated angle (maximum firing rate)')
subplot(1, 3, 3);
hold on;
plot(x, x, 'k');
scatter(angles, e3sm);
xlabel('stimulus angle')
ylabel('estimated angle (maximum likelihood)')