Merge branch 'master' of whale.am28.uni-tuebingen.de:scientificComputing
This commit is contained in:
commit
f4716d8ea7
@ -0,0 +1,23 @@
|
||||
function angle = maxlikelihoodangle(phases, gains, rates)
|
||||
% maximum likelihood estimation of orientation
|
||||
cosine = @(g,p,xdata)0.5*g.*(1.0+cos(2.0*pi*(xdata-p)/180.0));
|
||||
angels = 0:1.0:180.0;
|
||||
loglikelihoods = zeros(length(phases), length(angels));
|
||||
for i=1:length(phases)
|
||||
r = cosine(gains(i), phases(i), angels);
|
||||
%%loglikelihoods(i, :) = exp(-0.5*((rates(i)-r)./(0.25*r)).^2.0)./sqrt(2.0*pi*(0.25*r).^2.0);
|
||||
%loglikelihoods(i, :) = log(exp(-0.5*((rates(i)-r)./(0.25*r)).^2.0)./sqrt(2.0*pi*(0.25*r).^2.0));
|
||||
loglikelihoods(i, :) = -0.5*((rates(i)-r)./(0.25*r)).^2.0 - 0.5*log(2.0*pi*(0.25*r).^2.0);
|
||||
end
|
||||
loglikelihood = sum(loglikelihoods, 1);
|
||||
[m i] = max(loglikelihood);
|
||||
angle = angels(i);
|
||||
% plot(angels, loglikelihood);
|
||||
% hold on;
|
||||
% plot([angle angle], [-500 0], 'k')
|
||||
% hold off;
|
||||
% xlabel('angle');
|
||||
% ylabel('likelihood');
|
||||
% ylim([-500, 0]);
|
||||
% pause( 0.2 );
|
||||
end
|
@ -1,24 +1,24 @@
|
||||
close all
|
||||
datapath = '../';
|
||||
% datapath = '../code/';
|
||||
datapath = '../data/';
|
||||
files = dir(strcat(datapath, 'unit*.mat'));
|
||||
for file = files'
|
||||
a = load(strcat(datapath, file.name));
|
||||
spikes = a.spikes;
|
||||
angles = a.angles;
|
||||
figure()
|
||||
for k = 1:size(spikes, 1)
|
||||
subplot(3, 4, k)
|
||||
spikeraster(spikes(k,:), -0.2, 0.6);
|
||||
end
|
||||
end
|
||||
% for file = files'
|
||||
% a = load(strcat(datapath, file.name));
|
||||
% spikes = a.spikes;
|
||||
% angles = a.angles;
|
||||
% figure()
|
||||
% for k = 1:size(spikes, 1)
|
||||
% subplot(3, 4, k)
|
||||
% spikeraster(spikes(k,:), -0.2, 0.6);
|
||||
% end
|
||||
% end
|
||||
|
||||
|
||||
%% tuning curves:
|
||||
close all
|
||||
cosine = @(p,xdata)0.5*p(1).*(1.0+cos(2.0*pi*(xdata/180.0-p(2))));
|
||||
cosine = @(p,xdata)0.5*p(1).*(1.0+cos(2.0*pi*(xdata-p(2))/180.0));
|
||||
files = dir(strcat(datapath, 'unit*.mat'));
|
||||
phases = zeros(length(files), 1);
|
||||
gains = zeros(length(files), 1);
|
||||
figure()
|
||||
for j = 1:length(files)
|
||||
file = files(j);
|
||||
@ -31,10 +31,10 @@ for j = 1:length(files)
|
||||
rates(k) = r;
|
||||
end
|
||||
[mr, maxi] = max(rates);
|
||||
p0 = [mr, angles(maxi)/180.0-0.5];
|
||||
p0 = [mr, angles(maxi)];
|
||||
%p = p0;
|
||||
p = lsqcurvefit(cosine, p0, angles, rates');
|
||||
phase = p(2)*180.0;
|
||||
phase = p(2);
|
||||
if phase > 180.0
|
||||
phase = phase - 180.0;
|
||||
end
|
||||
@ -42,10 +42,12 @@ for j = 1:length(files)
|
||||
phase = phase + 180.0;
|
||||
end
|
||||
phases(j) = phase;
|
||||
gains(j) = p(1);
|
||||
subplot(2, 3, j);
|
||||
plot(angles, rates, 'b');
|
||||
hold on;
|
||||
plot(angles, cosine(p, angles), 'r');
|
||||
a = 0:0.1:180;
|
||||
plot(a, cosine(p, a), 'r');
|
||||
hold off;
|
||||
xlim([0.0 180.0])
|
||||
ylim([0.0 50.0])
|
||||
@ -57,12 +59,13 @@ end
|
||||
a = load(strcat(datapath, 'population04.mat'));
|
||||
spikes = a.spikes;
|
||||
angle = a.angle;
|
||||
unitphases = a.phases*180.0;
|
||||
unitphases(unitphases>180.0) = unitphases(unitphases>180.0) - 180.0;
|
||||
% unitphases = a.phases*180.0;
|
||||
% unitphases(unitphases>180.0) = unitphases(unitphases>180.0) - 180.0;
|
||||
figure();
|
||||
subplot(1, 3, 1);
|
||||
subplot(2, 2, 1);
|
||||
angleestimates1 = zeros(size(spikes, 2), 1);
|
||||
angleestimates2 = zeros(size(spikes, 2), 1);
|
||||
angleestimates3 = zeros(size(spikes, 2), 1);
|
||||
[x, inx] = sort(phases);
|
||||
% loop over trials:
|
||||
for j = 1:size(spikes, 2)
|
||||
@ -76,35 +79,60 @@ for j = 1:size(spikes, 2)
|
||||
angleestimates1(j) = popvecangle(phases, rates);
|
||||
[m, i] = max(rates);
|
||||
angleestimates2(j) = phases(i);
|
||||
angleestimates3(j) = maxlikelihoodangle(phases, gains, rates);
|
||||
end
|
||||
xlabel('preferred angle')
|
||||
ylabel('firing rate')
|
||||
hold off;
|
||||
subplot(1, 3, 2);
|
||||
subplot(2, 2, 2);
|
||||
hist(angleestimates1);
|
||||
xlabel('stimulus angle')
|
||||
subplot(1, 3, 3);
|
||||
xlabel('population vector angle')
|
||||
subplot(2, 2, 3);
|
||||
hist(angleestimates2);
|
||||
xlabel('stimulus angle')
|
||||
xlabel('max. rate angle')
|
||||
subplot(2, 2, 4);
|
||||
hist(angleestimates3);
|
||||
xlabel('max. likelihood angle')
|
||||
angle
|
||||
mean(angleestimates1)
|
||||
mean(angleestimates2)
|
||||
mean(angleestimates3)
|
||||
|
||||
|
||||
%% read out robustness:
|
||||
files = dir(strcat(datapath, 'population*.mat'));
|
||||
angles = zeros(length(files), 1);
|
||||
e1m = zeros(length(files), 1);
|
||||
e1s = zeros(length(files), 1);
|
||||
e2m = zeros(length(files), 1);
|
||||
e2s = zeros(length(files), 1);
|
||||
e1mm = zeros(length(files), 1);
|
||||
e2mm = zeros(length(files), 1);
|
||||
e3mm = zeros(length(files), 1);
|
||||
e1sm = zeros(length(files), 1);
|
||||
e1ss = zeros(length(files), 1);
|
||||
e2sm = zeros(length(files), 1);
|
||||
e2ss = zeros(length(files), 1);
|
||||
e3sm = zeros(length(files), 1);
|
||||
e3ss = zeros(length(files), 1);
|
||||
for i = 1:length(files)
|
||||
file = files(i);
|
||||
a = load(strcat(datapath, file.name));
|
||||
spikes = a.spikes;
|
||||
angle = a.angle;
|
||||
% multi trial estimates:
|
||||
rates = zeros(size(spikes, 1), 1);
|
||||
for k = 1:size(spikes, 1)
|
||||
r = zeros(size(spikes, 2), 1);
|
||||
for j = 1:size(spikes, 2)
|
||||
r(j) = firingrate(spikes(k, j), 0.0, 0.2);
|
||||
end
|
||||
rates(k) = mean(r);
|
||||
end
|
||||
e1mm(i) = popvecangle(phases, rates);
|
||||
[m, inx] = max(rates);
|
||||
e2mm(i) = phases(inx);
|
||||
e3mm(i) = maxlikelihoodangle(phases, gains, rates);
|
||||
% single trial estimates:
|
||||
angleestimates1 = zeros(size(spikes, 2), 1);
|
||||
angleestimates2 = zeros(size(spikes, 2), 1);
|
||||
angleestimates3 = zeros(size(spikes, 2), 1);
|
||||
for j = 1:size(spikes, 2)
|
||||
rates = zeros(size(spikes, 1), 1);
|
||||
for k = 1:size(spikes, 1)
|
||||
@ -114,19 +142,52 @@ for i = 1:length(files)
|
||||
angleestimates1(j) = popvecangle(phases, rates);
|
||||
[m, inx] = max(rates);
|
||||
angleestimates2(j) = phases(inx);
|
||||
angleestimates3(j) = maxlikelihoodangle(phases, gains, rates);
|
||||
end
|
||||
angles(i) = angle;
|
||||
e1m(i) = mean(angleestimates1);
|
||||
e1s(i) = std(angleestimates1);
|
||||
e2m(i) = mean(angleestimates2);
|
||||
e2s(i) = std(angleestimates2);
|
||||
e1sm(i) = mean(angleestimates1);
|
||||
e1ss(i) = std(angleestimates1);
|
||||
e2sm(i) = mean(angleestimates2);
|
||||
e2ss(i) = std(angleestimates2);
|
||||
e3sm(i) = mean(angleestimates3);
|
||||
e3ss(i) = std(angleestimates3);
|
||||
end
|
||||
x = 0:180.0;
|
||||
figure();
|
||||
subplot(1, 3, 1);
|
||||
hold on;
|
||||
plot(x, x, 'k');
|
||||
scatter(angles, e1mm);
|
||||
xlabel('stimulus angle')
|
||||
ylabel('estimated angle (population vector)')
|
||||
subplot(1, 3, 2);
|
||||
hold on;
|
||||
plot(x, x, 'k');
|
||||
scatter(angles, e2mm);
|
||||
xlabel('stimulus angle')
|
||||
ylabel('estimated angle (maximum firing rate)')
|
||||
subplot(1, 3, 3);
|
||||
hold on;
|
||||
plot(x, x, 'k');
|
||||
scatter(angles, e3mm);
|
||||
xlabel('stimulus angle')
|
||||
ylabel('estimated angle (maximum likelihood)')
|
||||
figure();
|
||||
subplot(1, 2, 1);
|
||||
scatter(angles, e1m);
|
||||
xlabel('stimuluis angle')
|
||||
ylabel('estimated angle')
|
||||
subplot(1, 2, 2);
|
||||
scatter(angles, e2m);
|
||||
xlabel('stimuluis angle')
|
||||
ylabel('estimated angle')
|
||||
subplot(1, 3, 1);
|
||||
hold on;
|
||||
plot(x, x, 'k');
|
||||
scatter(angles, e1sm);
|
||||
xlabel('stimulus angle')
|
||||
ylabel('estimated angle (population vector)')
|
||||
subplot(1, 3, 2);
|
||||
hold on;
|
||||
plot(x, x, 'k');
|
||||
scatter(angles, e2sm);
|
||||
xlabel('stimulus angle')
|
||||
ylabel('estimated angle (maximum firing rate)')
|
||||
subplot(1, 3, 3);
|
||||
hold on;
|
||||
plot(x, x, 'k');
|
||||
scatter(angles, e3sm);
|
||||
xlabel('stimulus angle')
|
||||
ylabel('estimated angle (maximum likelihood)')
|
||||
|
Reference in New Issue
Block a user