Added matlab code to mle chapter
This commit is contained in:
parent
93089b4be2
commit
effc38f96f
51
statistics/code/mlemeanstd.m
Normal file
51
statistics/code/mlemeanstd.m
Normal file
@ -0,0 +1,51 @@
|
||||
% draw random numbers:
|
||||
n = 500;
|
||||
mu = 3.0;
|
||||
sigma =2.0;
|
||||
x = randn(n,1)*sigma+mu;
|
||||
fprintf(' mean of the data is %.2f\n', mean(x))
|
||||
fprintf('standard deviation of the data is %.2f\n', std(x))
|
||||
|
||||
% mean as parameter:
|
||||
pmus = 2.0:0.01:4.0;
|
||||
% matrix with the probabilities for each x and pmus:
|
||||
lms = zeros(length(x), length(pmus));
|
||||
for i=1:length(pmus)
|
||||
pmu = pmus(i);
|
||||
p = exp(-0.5*((x-pmu)/sigma).^2.0)/sqrt(2.0*pi)/sigma;
|
||||
lms(:,i) = p;
|
||||
end
|
||||
lm = prod(lms, 1); % likelihood
|
||||
loglm = sum(log(lms), 1); % log likelihood
|
||||
|
||||
% plot likelihood of mean:
|
||||
subplot(2, 2, 1);
|
||||
plot(pmus, lm );
|
||||
xlabel('mean')
|
||||
ylabel('likelihood')
|
||||
subplot(2, 2, 2);
|
||||
plot(pmus, loglm );
|
||||
xlabel('mean')
|
||||
ylabel('log likelihood')
|
||||
|
||||
% standard deviation as parameter:
|
||||
psigs = 1.0:0.01:3.0;
|
||||
% matrix with the probabilities for each x and psigs:
|
||||
lms = zeros(length(x), length(psigs));
|
||||
for i=1:length(psigs)
|
||||
psig = psigs(i);
|
||||
p = exp(-0.5*((x-mu)/psig).^2.0)/sqrt(2.0*pi)/psig;
|
||||
lms(:,i) = p;
|
||||
end
|
||||
lm = prod(lms, 1); % likelihood
|
||||
loglm = sum(log(lms), 1); % log likelihood
|
||||
|
||||
% plot likelihood of standard deviation:
|
||||
subplot(2, 2, 3);
|
||||
plot(psigs, lm );
|
||||
xlabel('standard deviation')
|
||||
ylabel('likelihood')
|
||||
subplot(2, 2, 4);
|
||||
plot(psigs, loglm);
|
||||
xlabel('standard deviation')
|
||||
ylabel('log likelihood')
|
27
statistics/code/mlepdffit.m
Normal file
27
statistics/code/mlepdffit.m
Normal file
@ -0,0 +1,27 @@
|
||||
% plot gamma pdfs:
|
||||
xx = 0.0:0.1:10.0;
|
||||
shapes = [ 1.0, 2.0, 3.0, 5.0];
|
||||
cc = jet(length(shapes) );
|
||||
for i=1:length(shapes)
|
||||
yy = gampdf(xx, shapes(i), 1.0);
|
||||
plot(xx, yy, '-', 'linewidth', 3, 'color', cc(i,:), ...
|
||||
'DisplayName', sprintf('s=%.0f', shapes(i)) );
|
||||
hold on;
|
||||
end
|
||||
|
||||
% generate gamma distributed random numbers:
|
||||
n = 50;
|
||||
x = gamrnd(3.0, 1.0, n, 1);
|
||||
|
||||
% histogram:
|
||||
[h,b] = hist(x, 15);
|
||||
h = h/sum(h)/(b(2)-b(1));
|
||||
bar(b, h, 1.0, 'DisplayName', 'data');
|
||||
|
||||
% maximum likelihood estimate:
|
||||
p = mle(x, 'distribution', 'gamma');
|
||||
yy = gampdf(xx, p(1), p(2));
|
||||
plot(xx, yy, '-k', 'linewidth', 5, 'DisplayName', 'mle' );
|
||||
|
||||
hold off;
|
||||
legend('show');
|
29
statistics/code/mlepropfit.m
Normal file
29
statistics/code/mlepropfit.m
Normal file
@ -0,0 +1,29 @@
|
||||
m = 2.0; % slope
|
||||
sigma = 1.0; % standard deviation
|
||||
n = 100; % number of data pairs
|
||||
|
||||
% data pairs:
|
||||
x = 5.0*rand(n, 1);
|
||||
y = m*x + sigma*randn(n, 1);
|
||||
|
||||
% fit:
|
||||
slope = mleslope(x, y);
|
||||
fprintf('slopes:\n');
|
||||
fprintf('original = %.2f\n', m);
|
||||
fprintf(' fit = %.2f\n', slope);
|
||||
|
||||
% lines:
|
||||
xx = 0.0:0.1:5.0; % x-axis values
|
||||
yorg = m*xx;
|
||||
yfit = slope*xx;
|
||||
|
||||
% plot:
|
||||
plot(xx, yorg, '-r', 'linewidth', 5);
|
||||
hold on;
|
||||
plot(xx, yfit, '-g', 'linewidth', 2);
|
||||
plot(x, y, 'ob');
|
||||
hold off;
|
||||
legend('data', 'original', 'fit', 'Location', 'NorthWest');
|
||||
legend('boxoff')
|
||||
xlabel('x');
|
||||
ylabel('y');
|
6
statistics/code/mleslope.m
Normal file
6
statistics/code/mleslope.m
Normal file
@ -0,0 +1,6 @@
|
||||
function slope = mleslope(x, y )
|
||||
% Compute the maximum likelihood estimate of the slope
|
||||
% of a line through the origin
|
||||
% given the data pairs in the vectors x and y.
|
||||
slope = sum(x.*y)/sum(x.*x);
|
||||
end
|
@ -145,10 +145,10 @@
|
||||
|
||||
%%%%% equation references %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
%\newcommand{\eqref}[1]{(\ref{#1})}
|
||||
\newcommand{\eqn}{Eq.}
|
||||
\newcommand{\Eqn}{Eq.}
|
||||
\newcommand{\eqns}{Eqs.}
|
||||
\newcommand{\Eqns}{Eqs.}
|
||||
\newcommand{\eqn}{\tr{Eq}{Gl}.}
|
||||
\newcommand{\Eqn}{\tr{Eq}{Gl}.}
|
||||
\newcommand{\eqns}{\tr{Eqs}{Gln}.}
|
||||
\newcommand{\Eqns}{\tr{Eqs}{Gln}.}
|
||||
\newcommand{\eqnref}[1]{\eqn~\eqref{#1}}
|
||||
\newcommand{\Eqnref}[1]{\Eqn~\eqref{#1}}
|
||||
\newcommand{\eqnsref}[1]{\eqns~\eqref{#1}}
|
||||
@ -205,13 +205,13 @@
|
||||
\newenvironment{definition}[1][]{\medskip\noindent\textbf{Definition}\ifthenelse{\equal{#1}{}}{}{ #1}:\newline}%
|
||||
{\medskip}
|
||||
|
||||
\newcommand{\showlisting}{yes}
|
||||
%\newcommand{\showlisting}{no}
|
||||
\newcounter{maxexercise}
|
||||
\setcounter{maxexercise}{9} % show listings up to exercise maxexercise
|
||||
\newcounter{theexercise}
|
||||
\setcounter{theexercise}{1}
|
||||
\newenvironment{exercise}[1][]{\medskip\noindent\textbf{\tr{Exercise}{\"Ubung}
|
||||
\arabic{theexercise}:} \stepcounter{theexercise}\newline \newcommand{\exercisesource}{#1}}%
|
||||
{\ifthenelse{\equal{\exercisesource}{}}{}{\ifthenelse{\equal{\showlisting}{yes}}{\medskip\lstinputlisting{\exercisesource}}{}}\medskip}
|
||||
\arabic{theexercise}:}\newline \newcommand{\exercisesource}{#1}}%
|
||||
{\ifthenelse{\equal{\exercisesource}{}}{}{\ifthenelse{\value{theexercise}>\value{maxexercise}}{}{\medskip\lstinputlisting{\exercisesource}}}\medskip\stepcounter{theexercise}}
|
||||
|
||||
\graphicspath{{figures/}}
|
||||
|
||||
@ -455,6 +455,347 @@ Korrelationskoeffizienten nahe 0 (\figrefb{correlationfig}).
|
||||
\end{figure}
|
||||
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\chapter{\tr{Bootstrap Methods}{Bootstrap Methoden}}
|
||||
|
||||
Beim Bootstrap erzeugt man sich die Verteilung von Statistiken durch Resampling
|
||||
aus der Stichprobe. Das hat mehrere Vorteile:
|
||||
\begin{itemize}
|
||||
\item Weniger Annahmen (z.B. muss eine Stichprobe nicht Normalverteilt sein).
|
||||
\item H\"ohere Genauigkeit als klassische Methoden.
|
||||
\item Allgemeing\"ultigkeit: Bootstrap Methoden sind sich sehr
|
||||
\"ahnlich f\"ur viele verschiedene Statistiken und ben\"otigen nicht
|
||||
f\"ur jede Statistik eine andere Formel.
|
||||
\end{itemize}
|
||||
|
||||
\begin{figure}[t]
|
||||
\includegraphics[width=0.8\textwidth]{2012-10-29_16-26-05_771}\\[2ex]
|
||||
\includegraphics[width=0.8\textwidth]{2012-10-29_16-41-39_523}\\[2ex]
|
||||
\includegraphics[width=0.8\textwidth]{2012-10-29_16-29-35_312}
|
||||
\caption{\tr{Why can we only measure a sample of the
|
||||
population?}{Warum k\"onnen wir nur eine Stichprobe der
|
||||
Grundgesamtheit messen?}}
|
||||
\end{figure}
|
||||
|
||||
\begin{figure}[t]
|
||||
\includegraphics[height=0.2\textheight]{srs1}\\[2ex]
|
||||
\includegraphics[height=0.2\textheight]{srs2}\\[2ex]
|
||||
\includegraphics[height=0.2\textheight]{srs3}
|
||||
\caption{Bootstrap der Stichprobenvertielung (a) Von der
|
||||
Grundgesamtheit (population) mit unbekanntem Parameter
|
||||
(z.B. Mittelwert $\mu$) zieht man Stichproben (SRS: simple random
|
||||
samples). Die Statistik (hier Bestimmung von $\bar x$) kann f\"ur
|
||||
jede Stichprobe berechnet werden. Die erhaltenen Werte entstammen
|
||||
der Stichprobenverteilung. Meisten wird aber nur eine Stichprobe
|
||||
gezogen! (b) Mit bestimmten Annahmen und Theorien kann man auf
|
||||
die Stichprobenverteilung schlie{\ss}en ohne sie gemessen zu
|
||||
haben. (c) Alternativ k\"onnen aus der einen Stichprobe viele
|
||||
Bootstrap-Stichproben generiert werden (resampling) und so
|
||||
Eigenschaften der Stichprobenverteilung empirisch bestimmt
|
||||
werden. Aus Hesterberg et al. 2003, Bootstrap Methods and
|
||||
Permuation Tests}
|
||||
\end{figure}
|
||||
|
||||
\section{Bootstrap des Standardfehlers}
|
||||
|
||||
Beim Bootstrap erzeugen wir durch Resampling neue Stichproben und
|
||||
benutzen diese um die Stichprobenverteilung einer Statistik zu
|
||||
berechnen. Die Bootstrap Stichproben haben jeweils den gleichen Umfang
|
||||
wie die urspr\"unglich gemessene Stichprobe und werden durch Ziehen
|
||||
mit Zur\"ucklegen gewonnen. Jeder Wert der urspr\"unglichen Stichprobe
|
||||
kann also einmal, mehrmals oder gar nicht in einer Bootstrap
|
||||
Stichprobe vorkommen.
|
||||
|
||||
\begin{exercise}[bootstrapsem.m]
|
||||
Ziehe 1000 normalverteilte Zufallszahlen und berechne deren Mittelwert,
|
||||
Standardabweichung und Standardfehler ($\sigma/\sqrt{n}$).
|
||||
|
||||
Resample die Daten 1000 mal (Ziehen mit Zur\"ucklegen) und berechne jeweils
|
||||
den Mittelwert.
|
||||
|
||||
Plotte ein Histogramm dieser Mittelwerte, sowie deren Mittelwert und
|
||||
die Standardabweichung.
|
||||
|
||||
Was hat das mit dem Standardfehler zu tun?
|
||||
\end{exercise}
|
||||
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\chapter{\tr{Maximum likelihood estimation}{Maximum-Likelihood Methode}}
|
||||
|
||||
In vielen Situationen wollen wir einen oder mehrere Parameter $\theta$
|
||||
einer Wahrscheinlichkeitsverteilung sch\"atzen, so dass die Verteilung
|
||||
die Daten $x_1, x_2, \ldots x_n$ am besten beschreibt. Bei der
|
||||
Maximum-Likelihood-Methode w\"ahlen wir die Parameter so, dass die
|
||||
Wahrscheinlichkeit, dass die Daten aus der Verteilung stammen, am
|
||||
gr\"o{\ss}ten ist.
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\section{Maximum Likelihood}
|
||||
Sei $p(x|\theta)$ (lies ``Wahrscheinlichkeit(sdichte) von $x$ gegeben
|
||||
$\theta$'') die Wahrscheinlichkeits(dichte)verteilung von $x$ mit dem
|
||||
Parameter(n) $\theta$. Das k\"onnte die Normalverteilung
|
||||
\begin{equation}
|
||||
\label{normpdfmean}
|
||||
p(x|\theta) = \frac{1}{\sqrt{2\pi \sigma^2}}e^{-\frac{(x-\theta)^2}{2\sigma^2}}
|
||||
\end{equation}
|
||||
sein mit
|
||||
fester Standardverteilung $\sigma$ und dem Mittelwert $\mu$ als
|
||||
Parameter $\theta$.
|
||||
|
||||
Wenn nun den $n$ unabh\"angigen Beobachtungen $x_1, x_2, \ldots x_n$
|
||||
die Wahrscheinlichkeitsverteilung $p(x|\theta)$ zugrundeliegt, dann
|
||||
ist die Verbundwahrscheinlichkeit $p(x_1,x_2, \ldots x_n|\theta)$ des
|
||||
Auftretens der Werte $x_1, x_2, \ldots x_n$ gegeben ein bestimmtes $\theta$
|
||||
\begin{equation}
|
||||
p(x_1,x_2, \ldots x_n|\theta) = p(x_1|\theta) \cdot p(x_2|\theta)
|
||||
\ldots p(x_n|\theta) = \prod_{i=1}^n p(x_i|\theta) \; .
|
||||
\end{equation}
|
||||
Andersherum gesehen ist das die Likelihood (deutsch immer noch ``Wahrscheinlichleit'')
|
||||
den Parameter $\theta$ zu haben, gegeben die Me{\ss}werte $x_1, x_2, \ldots x_n$,
|
||||
\begin{equation}
|
||||
{\cal L}(\theta|x_1,x_2, \ldots x_n) = p(x_1,x_2, \ldots x_n|\theta)
|
||||
\end{equation}
|
||||
|
||||
Wir sind nun an dem Wert des Parameters $\theta_{mle}$ interessiert, der die
|
||||
Likelihood maximiert (``mle'': Maximum-Likelihood Estimate):
|
||||
\begin{equation}
|
||||
\theta_{mle} = \text{argmax}_{\theta} {\cal L}(\theta|x_1,x_2, \ldots x_n)
|
||||
\end{equation}
|
||||
$\text{argmax}_xf(x)$ bezeichnet den Wert des Arguments $x$ der Funktion $f(x)$, bei
|
||||
dem $f(x)$ ihr globales Maximum annimmt. Wir suchen also den Wert von $\theta$
|
||||
bei dem die Likelihood ${\cal L}(\theta)$ ihr Maximum hat.
|
||||
|
||||
An der Stelle eines Maximums einer Funktion \"andert sich nichts, wenn
|
||||
man die Funktionswerte mit einer streng monoton steigenden Funktion
|
||||
transformiert. Aus gleich ersichtlichen mathematischen Gr\"unden wird meistens
|
||||
das Maximum der logarithmierten Likelihood (``Log-Likelihood'') gesucht:
|
||||
\begin{eqnarray}
|
||||
\theta_{mle} & = & \text{argmax}_{\theta}\; {\cal L}(\theta|x_1,x_2, \ldots x_n) \nonumber \\
|
||||
& = & \text{argmax}_{\theta}\; \log {\cal L}(\theta|x_1,x_2, \ldots x_n) \nonumber \\
|
||||
& = & \text{argmax}_{\theta}\; \log \prod_{i=1}^n p(x_i|\theta) \nonumber \\
|
||||
& = & \text{argmax}_{\theta}\; \sum_{i=1}^n \log p(x_i|\theta) \label{loglikelihood}
|
||||
\end{eqnarray}
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\subsection{Beispiel: Das arithmetische Mittel}
|
||||
|
||||
Wenn die Me{\ss}daten $x_1, x_2, \ldots x_n$ der Normalverteilung \eqnref{normpdfmean}
|
||||
entstammen, und wir den Mittelwert $\mu$ als einzigen Parameter der Verteilung betrachten,
|
||||
welcher Wert von $\theta$ maximiert dessen Likelhood?
|
||||
|
||||
\begin{figure}[t]
|
||||
\includegraphics[width=1\textwidth]{mlemean}
|
||||
\caption{\label{mlemeanfig} Maximum Likelihood Estimation des
|
||||
Mittelwerts. Oben: Die Daten zusammen mit drei m\"oglichen
|
||||
Normalverteilungen mit unterschiedlichen Mittelwerten (Pfeile) aus
|
||||
denen die Daten stammen k\"onnten. Unteln links: Die Likelihood
|
||||
in Abh\"angigkeit des Mittelwerts als Parameter der
|
||||
Normalverteilungen. Unten rechts: die entsprechende
|
||||
Log-Likelihood. An der Position des Maximums bei $\theta=2$
|
||||
\"andert sich nichts (Pfeil).}
|
||||
\end{figure}
|
||||
|
||||
Die Log-Likelihood \eqnref{loglikelihood} ist
|
||||
\begin{eqnarray*}
|
||||
\log {\cal L}(\theta|x_1,x_2, \ldots x_n)
|
||||
& = & \sum_{i=1}^n \log \frac{1}{\sqrt{2\pi \sigma^2}}e^{-\frac{(x_i-\theta)^2}{2\sigma^2}} \\
|
||||
& = & \sum_{i=1}^n - \log \sqrt{2\pi \sigma^2} -\frac{(x_i-\theta)^2}{2\sigma^2}
|
||||
\end{eqnarray*}
|
||||
Zur Bestimmung des Maximums der Log-Likelihood berechnen wir deren Ableitung
|
||||
nach dem Parameter $\theta$ und setzen diese gleich Null:
|
||||
\begin{eqnarray*}
|
||||
\frac{\text{d}}{\text{d}\theta} \log {\cal L}(\theta|x_1,x_2, \ldots x_n) & = & \sum_{i=1}^n \frac{2(x_i-\theta)}{2\sigma^2} \;\; = \;\; 0 \\
|
||||
\Leftrightarrow \quad \sum_{i=1}^n x_i - \sum_{i=1}^n x_i \theta & = & 0 \\
|
||||
\Leftrightarrow \quad n \theta & = & \sum_{i=1}^n x_i \\
|
||||
\Leftrightarrow \quad \theta & = & \frac{1}{n} \sum_{i=1}^n x_i
|
||||
\end{eqnarray*}
|
||||
Der Maximum-Likelihood-Estimator ist das arithmetische Mittel der Daten. D.h.
|
||||
das arithmetische Mittel maximiert die Wahrscheinlichkeit, dass die Daten aus einer
|
||||
Normalverteilung mit diesem Mittelwert gezogen worden sind.
|
||||
|
||||
\begin{exercise}[mlemeanstd.m]
|
||||
Ziehe $n=50$ normalverteilte Zufallsvariablen mit einem Mittelwert $\ne 0$
|
||||
und einer Standardabweichung $\ne 1$.
|
||||
|
||||
Plotte die Likelihood (aus dem Produkt der Wahrscheinlichkeiten) und
|
||||
die Log-Likelihood (aus der Summe der logarithmierten
|
||||
Wahrscheinlichkeiten) f\"ur (1) den Mittelwert und (2) die
|
||||
Standardabweichung. Vergleiche die Position der Maxima mit den
|
||||
aus den Daten berechneten Mittelwerten und Standardabweichungen.
|
||||
|
||||
Erh\"ohe $n$ auf 1000. Was passiert mit der Likelihood, was mit der Log-Likelihood?
|
||||
\end{exercise}
|
||||
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\section{Kurvenfit als Maximum Likelihood Estimation}
|
||||
Beim Kurvenfit soll eine Funktion $f(x;\theta)$ mit den Parametern
|
||||
$\theta$ an die Datenpaare $(x_i|y_i)$ durch Anpassung der Parameter
|
||||
$\theta$ gefittet werden. Wenn wir annehmen, dass die $y_i$ um die
|
||||
entsprechenden Funktionswerte $f(x_i;\theta)$ mit einer
|
||||
Standardabweichung $\sigma_i$ normalverteilt streuen, dann lautet die
|
||||
Log-Likelihood
|
||||
\begin{eqnarray*}
|
||||
\log {\cal L}(\theta|x_1,x_2, \ldots x_n)
|
||||
& = & \sum_{i=1}^n \log \frac{1}{\sqrt{2\pi \sigma_i^2}}e^{-\frac{(y_i-f(x_i;\theta))^2}{2\sigma_i^2}} \\
|
||||
& = & \sum_{i=1}^n - \log \sqrt{2\pi \sigma_i^2} -\frac{(x_i-f(y_i;\theta))^2}{2\sigma_i^2} \\
|
||||
\end{eqnarray*}
|
||||
Der einzige Unterschied zum vorherigen Beispiel ist, dass die
|
||||
Mittelwerte der Normalverteilungen nun durch die Funktionswerte
|
||||
gegeben sind.
|
||||
|
||||
Der Parameter $\theta$ soll so gew\"ahlt werden, dass die
|
||||
Log-Likelihood maximal wird. Der erste Term der Summe ist
|
||||
unabh\"angig von $\theta$ und kann deshalb bei der Suche nach dem
|
||||
Maximum weggelassen werden.
|
||||
\begin{eqnarray*}
|
||||
& = & - \frac{1}{2} \sum_{i=1}^n \left( \frac{y_i-f(x_i;\theta)}{\sigma_i} \right)^2
|
||||
\end{eqnarray*}
|
||||
Anstatt nach dem Maximum zu suchen, k\"onnen wir auch das Vorzeichen der Log-Likelihood
|
||||
umdrehen und nach dem Minimum suchen. Dabei k\"onnen wir auch den Faktor $1/2$ vor der Summe vernachl\"assigen --- auch das \"andert nichts an der Position des Minimums.
|
||||
\begin{equation}
|
||||
\theta_{mle} = \text{argmin}_{\theta} \; \sum_{i=1}^n \left( \frac{y_i-f(x_i;\theta)}{\sigma_i} \right)^2 \;\; = \;\; \text{argmin}_{\theta} \; \chi^2
|
||||
\end{equation}
|
||||
Die Summer der quadratischen Abst\"ande normiert auf die jeweiligen
|
||||
Standardabweichungen wird auch mit $\chi^2$ bezeichnet. Der Wert des
|
||||
Parameters $\theta$ welcher den quadratischen Abstand minimiert ist
|
||||
also identisch mit der Maximierung der Wahrscheinlichkeit, dass die
|
||||
Daten tats\"achlich aus der Funktion stammen k\"onnen. Minimierung des
|
||||
$\chi^2$ ist also ein Maximum-Likelihood Estimate.
|
||||
|
||||
\begin{figure}[t]
|
||||
\includegraphics[width=1\textwidth]{mlepropline}
|
||||
\caption{\label{mleproplinefig} Maximum Likelihood Estimation der
|
||||
Steigung einer Ursprungsgeraden.}
|
||||
\end{figure}
|
||||
|
||||
|
||||
\subsection{Beispiel: einfache Proportionalit\"at}
|
||||
Als Funktion nehmen wir die Ursprungsgerade
|
||||
\[ f(x) = \theta x \]
|
||||
mit Steigung $\theta$. Die $\chi^2$-Summe lautet damit
|
||||
\[ \chi^2 = \sum_{i=1}^n \left( \frac{y_i-\theta x_i}{\sigma_i} \right)^2 \; . \]
|
||||
Zur Bestimmung des Minimums berechnen wir wieder die erste Ableitung nach $\theta$
|
||||
und setzen diese gleich Null:
|
||||
\begin{eqnarray}
|
||||
\frac{\text{d}}{\text{d}\theta}\chi^2 & = & \frac{\text{d}}{\text{d}\theta} \sum_{i=1}^n \left( \frac{y_i-\theta x_i}{\sigma_i} \right)^2 \nonumber \\
|
||||
& = & \sum_{i=1}^n \frac{\text{d}}{\text{d}\theta} \left( \frac{y_i-\theta x_i}{\sigma_i} \right)^2 \nonumber \\
|
||||
& = & -2 \sum_{i=1}^n \frac{x_i}{\sigma_i} \left( \frac{y_i-\theta x_i}{\sigma_i} \right) \nonumber \\
|
||||
& = & -2 \sum_{i=1}^n \left( \frac{x_iy_i}{\sigma_i^2} - \theta \frac{x_i^2}{\sigma_i^2} \right) \;\; = \;\; 0 \nonumber \\
|
||||
\Leftrightarrow \quad \theta \sum_{i=1}^n \frac{x_i^2}{\sigma_i^2} & = & \sum_{i=1}^n \frac{x_iy_i}{\sigma_i^2} \nonumber \\
|
||||
\Leftrightarrow \quad \theta & = & \frac{\sum_{i=1}^n \frac{x_iy_i}{\sigma_i^2}}{ \sum_{i=1}^n \frac{x_i^2}{\sigma_i^2}} \label{mleslope}
|
||||
\end{eqnarray}
|
||||
Damit haben wir nun einen anlytischen Ausdruck f\"ur die Bestimmung
|
||||
der Steigung $\theta$ des Regressionsgeraden gewonnen. Ein
|
||||
Gradientenabstieg ist f\"ur das Fitten der Geradensteigung also gar nicht
|
||||
n\"otig. Das gilt allgemein f\"ur das Fitten von Koeffizienten von
|
||||
linear kombinierten Basisfunktionen. Parameter die nichtlinear in
|
||||
einer Funktion enthalten sind k\"onnen aber nicht analytisch aus den
|
||||
Daten berechnet werden. Da bleibt dann nur auf numerische Verfahren
|
||||
zur Optimierung der Kostenfunktion, wie z.B. der Gradientenabstieg,
|
||||
zur\"uckzugreifen.
|
||||
|
||||
\begin{exercise}[mleslope.m]
|
||||
Schreibe eine Funktion, die in einem $x$ und einem $y$ Vektor die
|
||||
Datenpaare \"uberreicht bekommt und die Steigung der
|
||||
Ursprungsgeraden \eqnref{mleslope}, die die Likelihood maximiert,
|
||||
zur\"uckgibt ($\sigma=1$).
|
||||
\end{exercise}
|
||||
|
||||
\begin{exercise}[mlepropfit.m]
|
||||
Schreibe ein Skript, das Datenpaare erzeugt, die um eine
|
||||
Ursprungsgerade mit vorgegebener Steigung streuen. Berechne mit der
|
||||
Funktion die Steigung aus den Daten, vergleiche mit der wahren
|
||||
Steigung, und plotte die urspr\"ungliche sowie die gefittete Gerade
|
||||
zusammen mit den Daten.
|
||||
|
||||
Ver\"andere die Anzahl der Datenpunkte, die Steigung, sowie die
|
||||
Streuung der Daten um die Gerade.
|
||||
\end{exercise}
|
||||
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\section{Fits von Wahrscheinlichkeitsverteilungen}
|
||||
Zum Abschluss betrachten wir noch den Fall, bei dem wir die Parameter
|
||||
einer Wahrscheinlichkeitsdichtefunktion (z.B. Mittelwert und
|
||||
Standardabweichung der Normalverteilung) an ein Datenset fitten wolle.
|
||||
|
||||
Ein erster Gedanke k\"onnte sein, die
|
||||
Wahrscheinlichkeitsdichtefunktion durch Minimierung des quadratischen
|
||||
Abstands an ein Histogram der Daten zu fitten. Das ist aber aus
|
||||
folgenden Gr\"unden nicht die Methode der Wahl: (i)
|
||||
Wahrscheinlichkeitsdichten k\"onnen nur positiv sein. Darum k\"onnen
|
||||
insbesondere bei kleinen Werten die Daten nicht symmetrisch streuen,
|
||||
wie es normalverteilte Daten machen sollten. (ii) Die Datenwerte sind
|
||||
nicht unabh\"angig, da das normierte Histogram sich zu Eins
|
||||
aufintegriert. Die beiden Annahmen normalverteilte und unabh\"angige Daten
|
||||
die die Minimierung des quadratischen Abstands zu einem Maximum
|
||||
Likelihood Estimator machen sind also verletzt. (iii) Das Histgramm
|
||||
h\"angt von der Wahl der Klassenbreite ab.
|
||||
|
||||
Den direkten Weg, eine Wahrscheinlichkeitsdichtefunktion an ein
|
||||
Datenset zu fitten, haben wir oben schon bei dem Beispiel zur
|
||||
Absch\"atzung des Mittelwertes einer Normalverteilung gesehen ---
|
||||
Maximum Likelihood! Wir suchen einfach die Parameter $\theta$ der
|
||||
gesuchten Wahrscheinlichkeitsdichtefunktion bei der die Log-Likelihood
|
||||
\eqnref{loglikelihood} maximal wird. Das ist im allgemeinen ein
|
||||
nichtlinieares Optimierungsproblem, das mit numerischen Verfahren, wie
|
||||
z.B. dem Gradientenabstieg, gel\"ost wird.
|
||||
|
||||
\begin{figure}[t]
|
||||
\includegraphics[width=1\textwidth]{mlepdf}
|
||||
\caption{\label{mlepdffig} Maximum Likelihood Estimation einer
|
||||
Wahrscheinlichkeitsdichtefunktion. Links: die 100 Datenpunkte, die aus der Gammaverteilung
|
||||
2. Ordnung (rot) gezogen worden sind. Der Maximum-Likelihood-Fit ist orange dargestellt.
|
||||
Rechts: das normierte Histogramm der Daten zusammen mit der \"uber Minimierung
|
||||
des quadratischen Abstands zum Histogramm berechneten Fits ist potentiell schlechter.}
|
||||
\end{figure}
|
||||
|
||||
|
||||
\begin{exercise}[mlepdffit.m]
|
||||
Zur Abwechslung ziehen wir uns diesmal Zufallszahlen, die nicht
|
||||
einer Normalverteilung entstammen, sonder aus der Gamma-Verteilung.
|
||||
|
||||
Finde heraus welche Funktion die Wahrscheinlichkeitsdichtefunktion
|
||||
(probability density function) der Gamma-Verteilung in \code{matlab}
|
||||
berechnet.
|
||||
|
||||
Plotte mit Hilfe dieser Funktion die Wahrscheinlichkeitsdichtefunktion
|
||||
der Gamma-Verteilung f\"ur verschiedene Werte des (positiven) ``shape'' Parameters.
|
||||
Den ``scale'' Parameter setzen wir auf Eins.
|
||||
|
||||
Finde heraus mit welcher Funktion Gamma-verteilte Zufallszahlen in
|
||||
\code{matlab} gezogen werden k\"onnen. Erzeuge mit dieser Funktion
|
||||
50 Zufallszahlen mit einem der oben geplotteten ``shape'' Parameter.
|
||||
|
||||
Berechne und plotte ein normiertes Histogramm dieser Zufallszahlen.
|
||||
|
||||
Finde heraus mit welcher \code{matlab}-Funktion die Gammaverteilung
|
||||
an die Zufallszahlen nach der Maximum-Likelihood Methode gefittet
|
||||
werden kann. Bestimme mit dieser Funktion die Parameter der
|
||||
Gammaverteilung aus den Zufallszahlen. Plotte anschlie{\ss}end
|
||||
die Gammaverteilung mit den gefitteten Parametern.
|
||||
\end{exercise}
|
||||
|
||||
|
||||
\end{document}
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\section{Statistics}
|
||||
What is "a statistic"? % dt. Sch\"atzfunktion
|
||||
\begin{definition}[statistic]
|
||||
A statistic (singular) is a single measure of some attribute of a
|
||||
sample (e.g., its arithmetic mean value). It is calculated by
|
||||
applying a function (statistical algorithm) to the values of the
|
||||
items of the sample, which are known together as a set of data.
|
||||
|
||||
\source{http://en.wikipedia.org/wiki/Statistic}
|
||||
\end{definition}
|
||||
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\section{Data types}
|
||||
|
||||
@ -574,281 +915,3 @@ Korrelationskoeffizienten nahe 0 (\figrefb{correlationfig}).
|
||||
|
||||
\end{itemize}
|
||||
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\chapter{\tr{Bootstrap Methods}{Bootstrap Methoden}}
|
||||
|
||||
Beim Bootstrap erzeugt man sich die Verteilung von Statistiken durch Resampling
|
||||
aus der Stichprobe. Das hat mehrere Vorteile:
|
||||
\begin{itemize}
|
||||
\item Weniger Annahmen (z.B. muss eine Stichprobe nicht Normalverteilt sein).
|
||||
\item H\"ohere Genauigkeit als klassische Methoden.
|
||||
\item Allgemeing\"ultigkeit: Bootstrap Methoden sind sich sehr
|
||||
\"ahnlich f\"ur viele verschiedene Statistiken und ben\"otigen nicht
|
||||
f\"ur jede Statistik eine andere Formel.
|
||||
\end{itemize}
|
||||
|
||||
\begin{figure}[t]
|
||||
\includegraphics[width=0.8\textwidth]{2012-10-29_16-26-05_771}\\[2ex]
|
||||
\includegraphics[width=0.8\textwidth]{2012-10-29_16-41-39_523}\\[2ex]
|
||||
\includegraphics[width=0.8\textwidth]{2012-10-29_16-29-35_312}
|
||||
\caption{\tr{Why can we only measure a sample of the
|
||||
population?}{Warum k\"onnen wir nur eine Stichprobe der
|
||||
Grundgesamtheit messen?}}
|
||||
\end{figure}
|
||||
|
||||
\begin{figure}[t]
|
||||
\includegraphics[height=0.2\textheight]{srs1}\\[2ex]
|
||||
\includegraphics[height=0.2\textheight]{srs2}\\[2ex]
|
||||
\includegraphics[height=0.2\textheight]{srs3}
|
||||
\caption{Bootstrap der Stichprobenvertielung (a) Von der
|
||||
Grundgesamtheit (population) mit unbekanntem Parameter
|
||||
(z.B. Mittelwert $\mu$) zieht man Stichproben (SRS: simple random
|
||||
samples). Die Statistik (hier Bestimmung von $\bar x$) kann f\"ur
|
||||
jede Stichprobe berechnet werden. Die erhaltenen Werte entstammen
|
||||
der Stichprobenverteilung. Meisten wird aber nur eine Stichprobe
|
||||
gezogen! (b) Mit bestimmten Annahmen und Theorien kann man auf
|
||||
die Stichprobenverteilung schlie{\ss}en ohne sie gemessen zu
|
||||
haben. (c) Alternativ k\"onnen aus der einen Stichprobe viele
|
||||
Bootstrap-Stichproben generiert werden (resampling) und so
|
||||
Eigenschaften der Stichprobenverteilung empirisch bestimmt
|
||||
werden. Aus Hesterberg et al. 2003, Bootstrap Methods and
|
||||
Permuation Tests}
|
||||
\end{figure}
|
||||
|
||||
\section{Bootstrap des Standardfehlers}
|
||||
|
||||
Beim Bootstrap erzeugen wir durch Resampling neue Stichproben und
|
||||
benutzen diese um die Stichprobenverteilung einer Statistik zu
|
||||
berechnen. Die Bootstrap Stichproben haben jeweils den gleichen Umfang
|
||||
wie die urspr\"unglich gemessene Stichprobe und werden durch Ziehen
|
||||
mit Zur\"ucklegen gewonnen. Jeder Wert der urspr\"unglichen Stichprobe
|
||||
kann also einmal, mehrmals oder gar nicht in einer Bootstrap
|
||||
Stichprobe vorkommen.
|
||||
|
||||
\begin{exercise}[bootstrapsem.m]
|
||||
Ziehe 1000 normalverteilte Zufallszahlen und berechne deren Mittelwert,
|
||||
Standardabweichung und Standardfehler ($\sigma/\sqrt{n}$).
|
||||
|
||||
Resample die Daten 1000 mal (Ziehen mit Zur\"ucklegen) und berechne jeweils
|
||||
den Mittelwert.
|
||||
|
||||
Plotte ein Histogramm dieser Mittelwerte, sowie deren Mittelwert und
|
||||
die Standardabweichung.
|
||||
|
||||
Was hat das mit dem Standardfehler zu tun?
|
||||
\end{exercise}
|
||||
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\chapter{\tr{Maximum likelihood estimation}{Maximum-Likelihood Methode}}
|
||||
|
||||
In vielen Situationen wollen wir einen oder mehrere Parameter $\theta$
|
||||
einer Wahrscheinlichkeitsverteilung sch\"atzen, so dass die Verteilung
|
||||
die Daten $x_1, x_2, \ldots x_n$ am besten beschreibt. Bei der
|
||||
Maximum-Likelihood-Methode w\"ahlen wir die Parameter so, dass die
|
||||
Wahrscheinlichkeit, dass die Daten aus der Verteilung stammen, am
|
||||
gr\"o{\ss}ten ist.
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\section{Maximum Likelihood}
|
||||
Sei $p(x|\theta)$ (lies ``Wahrscheinlichkeit(sdichte) von $x$ gegeben
|
||||
$\theta$'') die Wahrscheinlichkeits(dichte)verteilung von $x$ mit dem
|
||||
Parameter(n) $\theta$. Das k\"onnte die Normalverteilung
|
||||
\begin{equation}
|
||||
\label{normpdfmean}
|
||||
p(x|\theta) = \frac{1}{\sqrt{2\pi \sigma^2}}e^{-\frac{(x-\theta)^2}{2\sigma^2}}
|
||||
\end{equation}
|
||||
sein mit
|
||||
fester Standardverteilung $\sigma$ und dem Mittelwert $\mu$ als
|
||||
Parameter $\theta$.
|
||||
|
||||
Wenn nun den $n$ unabh\"angigen Beobachtungen $x_1, x_2, \ldots x_n$
|
||||
die Wahrscheinlichkeitsverteilung $p(x|\theta)$ zugrundeliegt, dann
|
||||
ist die Verbundwahrscheinlichkeit $p(x_1,x_2, \ldots x_n|\theta)$ des
|
||||
Auftretens der Werte $x_1, x_2, \ldots x_n$ gegeben ein bestimmtes $\theta$
|
||||
\[ p(x_1,x_2, \ldots x_n|\theta) = p(x_1|\theta) \cdot p(x_2|\theta)
|
||||
\ldots p(x_n|\theta) = \prod_{i=1}^n p(x_i|\theta) \; .\]
|
||||
Andersherum gesehen ist das die Likelihood (deutsch immer noch ``Wahrscheinlichleit'')
|
||||
den Parameter $\theta$ zu haben, gegeben die Me{\ss}werte $x_1, x_2, \ldots x_n$,
|
||||
\[ {\cal L}(\theta|x_1,x_2, \ldots x_n) = p(x_1,x_2, \ldots x_n|\theta) \]
|
||||
|
||||
Wir sind nun an dem Wert des Parameters $\theta_{mle}$ interessiert, der die
|
||||
Likelihood maximiert (``mle'': Maximum-Likelihood Estimate):
|
||||
\[ \theta_{mle} = \text{argmax}_{\theta} {\cal L}(\theta|x_1,x_2,
|
||||
\ldots x_n) \]
|
||||
$\text{argmax}_xf(x)$ bezeichnet den Wert des Arguments $x$ der Funktion $f(x)$, bei
|
||||
dem $f(x)$ ihr globales Maximum annimmt. Wir suchen also den Wert von $\theta$
|
||||
bei dem die Likelihood ${\cal L}(\theta)$ ihr Maximum hat.
|
||||
|
||||
An der Stelle eines Maximums einer Funktion \"andert sich nichts, wenn
|
||||
man die Funktionswerte mit einer streng monoton steigenden Funktion
|
||||
transformiert. Aus gleich ersichtlichen mathematischen Gr\"unden wird meistens
|
||||
das Maximum der logarithmierten Likelihood (``Log-Likelihood'') gesucht:
|
||||
\begin{eqnarray}
|
||||
\theta_{mle} & = & \text{argmax}_{\theta}\; {\cal L}(\theta|x_1,x_2, \ldots x_n) \nonumber \\
|
||||
& = & \text{argmax}_{\theta}\; \log {\cal L}(\theta|x_1,x_2, \ldots x_n) \nonumber \\
|
||||
& = & \text{argmax}_{\theta}\; \log \prod_{i=1}^n p(x_i|\theta) \nonumber \\
|
||||
& = & \text{argmax}_{\theta}\; \sum_{i=1}^n \log p(x_i|\theta) \label{loglikelihood}
|
||||
\end{eqnarray}
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\subsection{Beispiel: Das arithmetische Mittel}
|
||||
|
||||
Wenn die Me{\ss}daten $x_1, x_2, \ldots x_n$ der Normalverteilung \eqnref{normpdfmean}
|
||||
entstammen, und wir den Mittelwert $\mu$ als einzigen Parameter der Verteilung betrachten,
|
||||
welcher Wert von $\theta$ maximiert dessen Likelhood?
|
||||
|
||||
\begin{figure}[t]
|
||||
\includegraphics[width=1\textwidth]{mlemean}
|
||||
\caption{\label{mlemeanfig} Maximum Likelihood Estimation des
|
||||
Mittelwerts. Oben: Die Daten zusammen mit drei m\"oglichen
|
||||
Normalverteilungen mit unterschiedlichen Mittelwerten (Pfeile) aus
|
||||
denen die Daten stammen k\"onnten. Unteln links: Die Likelihood
|
||||
in Abh\"angigkeit des Mittelwerts als Parameter der
|
||||
Normalverteilungen. Unten rechts: die entsprechende
|
||||
Log-Likelihood. An der Position des Maximums bei $\theta=2$
|
||||
\"andert sich nichts (Pfeil).}
|
||||
\end{figure}
|
||||
|
||||
Die Log-Likelihood \eqnref{loglikelihood} ist
|
||||
\begin{eqnarray*}
|
||||
\log {\cal L}(\theta|x_1,x_2, \ldots x_n)
|
||||
& = & \sum_{i=1}^n \log \frac{1}{\sqrt{2\pi \sigma^2}}e^{-\frac{(x_i-\theta)^2}{2\sigma^2}} \\
|
||||
& = & \sum_{i=1}^n - \log \sqrt{2\pi \sigma^2} -\frac{(x_i-\theta)^2}{2\sigma^2}
|
||||
\end{eqnarray*}
|
||||
Zur Bestimmung des Maximums der Log-Likelihood berechnen wir deren Ableitung
|
||||
nach dem Parameter $\theta$ und setzen diese gleich Null:
|
||||
\begin{eqnarray*}
|
||||
\frac{\text{d}}{\text{d}\theta} \log {\cal L}(\theta|x_1,x_2, \ldots x_n) & = & \sum_{i=1}^n \frac{2(x_i-\theta)}{2\sigma^2} \;\; = \;\; 0 \\
|
||||
\Leftrightarrow \quad \sum_{i=1}^n x_i - \sum_{i=1}^n x_i \theta & = & 0 \\
|
||||
\Leftrightarrow \quad n \theta & = & \sum_{i=1}^n x_i \\
|
||||
\Leftrightarrow \quad \theta & = & \frac{1}{n} \sum_{i=1}^n x_i
|
||||
\end{eqnarray*}
|
||||
Der Maximum-Likelihood-Estimator ist das arithmetische Mittel der Daten. D.h.
|
||||
das arithmetische Mittel maximiert die Wahrscheinlichkeit, dass die Daten aus einer
|
||||
Normalverteilung mit diesem Mittelwert gezogen worden sind.
|
||||
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\section{Kurvenfit als Maximum Likelihood Estimation}
|
||||
Beim Kurvenfit soll eine Funktion $f(x;\theta)$ mit den Parametern
|
||||
$\theta$ an die Datenpaare $(x_i|y_i)$ durch Anpassung der Parameter
|
||||
$\theta$ gefittet werden. Wenn wir annehmen, dass die $y_i$ um die
|
||||
entsprechenden Funktionswerte $f(x_i;\theta)$ mit einer
|
||||
Standardabweichung $\sigma_i$ normalverteilt streuen, dann lautet die
|
||||
Log-Likelihood
|
||||
\begin{eqnarray*}
|
||||
\log {\cal L}(\theta|x_1,x_2, \ldots x_n)
|
||||
& = & \sum_{i=1}^n \log \frac{1}{\sqrt{2\pi \sigma_i^2}}e^{-\frac{(y_i-f(x_i;\theta))^2}{2\sigma_i^2}} \\
|
||||
& = & \sum_{i=1}^n - \log \sqrt{2\pi \sigma_i^2} -\frac{(x_i-f(y_i;\theta))^2}{2\sigma_i^2} \\
|
||||
\end{eqnarray*}
|
||||
Der einzige Unterschied zum vorherigen Beispiel ist, dass die
|
||||
Mittelwerte der Normalverteilungen nun durch die Funktionswerte
|
||||
gegeben sind.
|
||||
|
||||
Der Parameter $\theta$ soll so gew\"ahlt werden, dass die
|
||||
Log-Likelihood maximal wird. Der erste Term der Summe ist
|
||||
unabh\"angig von $\theta$ und kann deshalb bei der Suche nach dem
|
||||
Maximum weggelassen werden.
|
||||
\begin{eqnarray*}
|
||||
& = & - \frac{1}{2} \sum_{i=1}^n \left( \frac{y_i-f(x_i;\theta)}{\sigma_i} \right)^2
|
||||
\end{eqnarray*}
|
||||
Anstatt nach dem Maximum zu suchen, k\"onnen wir auch das Vorzeichen der Log-Likelihood
|
||||
umdrehen und nach dem Minimum suchen. Dabei k\"onnen wir auch den Faktor $1/2$ vor der Summe vernachl\"assigen --- auch das \"andert nichts an der Position des Minimums.
|
||||
\begin{eqnarray*}
|
||||
\theta_{mle} & = & \text{argmin}_{\theta} \; \sum_{i=1}^n \left( \frac{y_i-f(x_i;\theta)}{\sigma_i} \right)^2 \;\; = \;\; \text{argmin}_{\theta} \; \chi^2
|
||||
\end{eqnarray*}
|
||||
Die Summer der quadratischen Abst\"ande normiert auf die jeweiligen
|
||||
Standardabweichungen wird auch mit $\chi^2$ bezeichnet. Der Wert des
|
||||
Parameters $\theta$ welcher den quadratischen Abstand minimiert ist
|
||||
also identisch mit der Maximierung der Wahrscheinlichkeit, dass die
|
||||
Daten tats\"achlich aus der Funktion stammen k\"onnen. Minimierung des
|
||||
$\chi^2$ ist also ein Maximum-Likelihood Estimate.
|
||||
|
||||
\begin{figure}[t]
|
||||
\includegraphics[width=1\textwidth]{mlepropline}
|
||||
\caption{\label{mleproplinefig} Maximum Likelihood Estimation der
|
||||
Steigung einer Ursprungsgeraden.}
|
||||
\end{figure}
|
||||
|
||||
|
||||
\subsection{Beispiel: einfache Proportionalit\"at}
|
||||
Als Funktion nehmen wir die Ursprungsgerade
|
||||
\[ f(x) = \theta x \]
|
||||
mit Steigung $\theta$. Die $\chi^2$-Summe lautet damit
|
||||
\[ \chi^2 = \sum_{i=1}^n \left( \frac{y_i-\theta x_i}{\sigma_i} \right)^2 \; . \]
|
||||
Zur Bestimmung des Minimums berechnen wir wieder die erste Ableitung nach $\theta$
|
||||
und setzen diese gleich Null:
|
||||
\begin{eqnarray*}
|
||||
\frac{\text{d}}{\text{d}\theta}\chi^2 & = & \frac{\text{d}}{\text{d}\theta} \sum_{i=1}^n \left( \frac{y_i-\theta x_i}{\sigma_i} \right)^2 \\
|
||||
& = & \sum_{i=1}^n \frac{\text{d}}{\text{d}\theta} \left( \frac{y_i-\theta x_i}{\sigma_i} \right)^2 \\
|
||||
& = & -2 \sum_{i=1}^n \frac{x_i}{\sigma_i} \left( \frac{y_i-\theta x_i}{\sigma_i} \right) \\
|
||||
& = & -2 \sum_{i=1}^n \left( \frac{x_iy_i}{\sigma_i^2} - \theta \frac{x_i^2}{\sigma_i^2} \right) \;\; = \;\; 0 \\
|
||||
\Leftrightarrow \quad \theta \sum_{i=1}^n \frac{x_i^2}{\sigma_i^2} & = & \sum_{i=1}^n \frac{x_iy_i}{\sigma_i^2} \\
|
||||
\Leftrightarrow \quad \theta & = & \frac{\sum_{i=1}^n \frac{x_iy_i}{\sigma_i^2}}{ \sum_{i=1}^n \frac{x_i^2}{\sigma_i^2}}
|
||||
\end{eqnarray*}
|
||||
Damit haben wir nun einen anlytischen Ausdruck f\"ur die Bestimmung
|
||||
der Steigung $\theta$ des Regressionsgeraden gewonnen. Ein
|
||||
Gradientenabstieg ist f\"ur das Fitten der Geradensteigung also gar nicht
|
||||
n\"otig. Das gilt allgemein f\"ur das fitten von Koeffizienten von
|
||||
linear kombinierten Basisfunktionen. Parameter die nichtlinear in
|
||||
einer Funktion enthalten sind k\"onnen aber nicht analytisch aus den
|
||||
Daten berechnet werden. Da bleibt dann nur auf numerische Verfahren
|
||||
zur Optimierung der Kostenfunktion, wie z.B. der Gradientenabstieg,
|
||||
zur\"uckzugreifen.
|
||||
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\section{Fits von Wahrscheinlichkeitsverteilungen}
|
||||
Zum Abschluss betrachten wir noch den Fall, bei dem wir die Parameter
|
||||
einer Wahrscheinlichkeitsdichtefunktion (z.B. Mittelwert und
|
||||
Standardabweichung der Normalverteilung) an ein Datenset fitten wolle.
|
||||
|
||||
Ein erster Gedanke k\"onnte sein, die
|
||||
Wahrscheinlichkeitsdichtefunktion durch Minimierung des quadratischen
|
||||
Abstands an ein Histogram der Daten zu fitten. Das ist aber aus
|
||||
folgenden Gr\"unden nicht die Methode der Wahl: (i)
|
||||
Wahrscheinlichkeitsdichten k\"onnen nur positiv sein. Darum k\"onnen
|
||||
insbesondere bei kleinen Werten die Daten nicht symmetrisch streuen,
|
||||
wie es normalverteilte Daten machen sollten. (ii) Die Datenwerte sind
|
||||
nicht unabh\"angig, da das normierte Histogram sich zu Eins
|
||||
aufintegriert. Die beiden Annahmen normalverteilte und unabh\"angige Daten
|
||||
die die Minimierung des quadratischen Abstands zu einem Maximum
|
||||
Likelihood Estimator machen sind also verletzt.
|
||||
|
||||
Den direkten Weg, eine Wahrscheinlichkeitsdichtefunktion an ein
|
||||
Datenset zu fitten, haben wir oben schon bei dem Beispiel zur
|
||||
Absch\"atzung des Mittelwertes einer Normalverteilung gesehen ---
|
||||
Maximum Likelihood! Wir suchen einfach die Parameter $\theta$ der
|
||||
gesuchten Wahrscheinlichkeitsdichtefunktion bei der die Log-Likelihood
|
||||
\eqnref{loglikelihood} maximal wird. Das ist im allgemeinen ein
|
||||
nichtlinieares Optimierungsproblem, das mit numerischen Verfahren, wie
|
||||
z.B. dem Gradientenabstieg, gel\"ost wird.
|
||||
|
||||
\begin{figure}[t]
|
||||
\includegraphics[width=1\textwidth]{mlepdf}
|
||||
\caption{\label{mlepdffig} Maximum Likelihood Estimation einer
|
||||
Wahrscheinlichkeitsdichtefunktion. Links: die 100 Datenpunkte, die aus der Gammaverteilung
|
||||
2. Ordnung (rot) gezogen worden sind. Der Maximum-Likelihood-Fit ist orange dargestellt.
|
||||
Rechts: das normierte Histogramm der Daten zusammen mit der \"uber Minimierung
|
||||
des quadratischen Abstands zum Histogramm berechneten Fits.}
|
||||
\end{figure}
|
||||
|
||||
|
||||
\end{document}
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\section{Statistics}
|
||||
What is "a statistic"? % dt. Sch\"atzfunktion
|
||||
\begin{definition}[statistic]
|
||||
A statistic (singular) is a single measure of some attribute of a
|
||||
sample (e.g., its arithmetic mean value). It is calculated by
|
||||
applying a function (statistical algorithm) to the values of the
|
||||
items of the sample, which are known together as a set of data.
|
||||
|
||||
\source{http://en.wikipedia.org/wiki/Statistic}
|
||||
\end{definition}
|
||||
|
||||
|
Reference in New Issue
Block a user