[pointprocesses] python version of sketch
This commit is contained in:
parent
e5fd1ecb32
commit
ea8add517c
@ -37,6 +37,7 @@ edgewidth = 0.0 if xkcd_style else 1.0
|
||||
mainline = {'linestyle': '-', 'linewidth': lwthick}
|
||||
minorline = {'linestyle': '-', 'linewidth': lwthin}
|
||||
largemarker = {'marker': 'o', 'markersize': 9, 'markeredgecolor': colors['white'], 'markeredgewidth': edgewidth}
|
||||
largeopenmarker = {'marker': 'o', 'markersize': 7, 'markerfacecolor': colors['white'], 'markeredgewidth': 2}
|
||||
smallmarker = {'marker': 'o', 'markersize': 6, 'markeredgecolor': colors['white'], 'markeredgewidth': edgewidth}
|
||||
largelinepoints = {'linestyle': '-', 'linewidth': lwthick, 'marker': 'o', 'markersize': 10, 'markeredgecolor': colors['white'], 'markeredgewidth': 1}
|
||||
smalllinepoints = {'linestyle': '-', 'linewidth': 1.4, 'marker': 'o', 'markersize': 7, 'markeredgecolor': colors['white'], 'markeredgewidth': 1}
|
||||
@ -88,6 +89,7 @@ fsAa = {'facecolor': colors['blue'], 'edgecolor': 'none', 'alpha': fillalpha}
|
||||
lsB = dict({'color': colors['red']}, **mainline)
|
||||
lsBm = dict({'color': colors['red']}, **minorline)
|
||||
psB = dict({'color': colors['red'], 'linestyle': 'none'}, **largemarker)
|
||||
psBo = dict({'markeredgecolor': colors['red'], 'linestyle': 'none'}, **largeopenmarker)
|
||||
psBm = dict({'color': colors['red'], 'linestyle': 'none'}, **smallmarker)
|
||||
lpsB = dict({'color': colors['red']}, **largelinepoints)
|
||||
lpsBm = dict({'color': colors['red']}, **smalllinepoints)
|
||||
|
@ -6,7 +6,7 @@ import matplotlib.pyplot as plt
|
||||
from plotstyle import *
|
||||
|
||||
|
||||
def get_instantaneous_rate(times, max_t=30., dt=1e-4):
|
||||
def instantaneous_rate(times, max_t=30., dt=1e-4):
|
||||
time = np.arange(0., max_t, dt)
|
||||
indices = np.asarray(times / dt, dtype=int)
|
||||
intervals = np.diff(np.hstack(([0], times)))
|
||||
@ -19,12 +19,12 @@ def get_instantaneous_rate(times, max_t=30., dt=1e-4):
|
||||
|
||||
def plot_isi_rate(spike_times, max_t=30, dt=1e-4):
|
||||
times = np.squeeze(spike_times[0][0])[:50000]
|
||||
time, rate = get_instantaneous_rate(times, max_t=50000*dt)
|
||||
time, rate = instantaneous_rate(times, max_t=50000*dt)
|
||||
|
||||
rates = np.zeros((len(rate), len(spike_times)))
|
||||
for i in range(len(spike_times)):
|
||||
_, rates[:, i] = get_instantaneous_rate(np.squeeze(spike_times[i][0])[:50000],
|
||||
max_t=50000*dt)
|
||||
_, rates[:, i] = instantaneous_rate(np.squeeze(spike_times[i][0])[:50000],
|
||||
max_t=50000*dt)
|
||||
avg_rate = np.mean(rates, axis=1)
|
||||
rate_std = np.std(rates, axis=1)
|
||||
|
||||
@ -48,7 +48,7 @@ def plot_isi_rate(spike_times, max_t=30, dt=1e-4):
|
||||
plt.close()
|
||||
|
||||
|
||||
def get_binned_rate(times, bin_width=0.05, max_t=30., dt=1e-4):
|
||||
def binned_rate(times, bin_width=0.05, max_t=30., dt=1e-4):
|
||||
time = np.arange(0., max_t, dt)
|
||||
bins = np.arange(0., max_t, bin_width)
|
||||
bin_indices = np.asarray(bins / dt, np.int)
|
||||
@ -62,10 +62,10 @@ def get_binned_rate(times, bin_width=0.05, max_t=30., dt=1e-4):
|
||||
|
||||
def plot_bin_rate(spike_times, bin_width, max_t=30, dt=1e-4):
|
||||
times = np.squeeze(spike_times[0][0])
|
||||
time, rate = get_binned_rate(times)
|
||||
time, rate = binned_rate(times)
|
||||
rates = np.zeros((len(rate), len(spike_times)))
|
||||
for i in range(len(spike_times)):
|
||||
_, rates[:, i] = get_binned_rate(np.squeeze(spike_times[i][0]))
|
||||
_, rates[:, i] = binned_rate(np.squeeze(spike_times[i][0]))
|
||||
avg_rate = np.mean(rates, axis=1)
|
||||
rate_std = np.std(rates, axis=1)
|
||||
|
||||
@ -93,7 +93,7 @@ def plot_bin_rate(spike_times, bin_width, max_t=30, dt=1e-4):
|
||||
plt.close()
|
||||
|
||||
|
||||
def get_convolved_rate(times, sigma, max_t=30., dt=1.e-4):
|
||||
def convolved_rate(times, sigma, max_t=30., dt=1.e-4):
|
||||
time = np.arange(0., max_t, dt)
|
||||
kernel = spst.norm.pdf(np.arange(-8*sigma, 8*sigma, dt),loc=0,scale=sigma)
|
||||
indices = np.asarray(times/dt, dtype=int)
|
||||
@ -105,11 +105,11 @@ def get_convolved_rate(times, sigma, max_t=30., dt=1.e-4):
|
||||
|
||||
def plot_conv_rate(spike_times, sigma=0.05, max_t=30, dt=1e-4):
|
||||
times = np.squeeze(spike_times[0][0])
|
||||
time, rate = get_convolved_rate(times, sigma)
|
||||
time, rate = convolved_rate(times, sigma)
|
||||
|
||||
rates = np.zeros((len(rate), len(spike_times)))
|
||||
for i in range(len(spike_times)):
|
||||
_, rates[:, i] = get_convolved_rate(np.squeeze(spike_times[i][0]), sigma)
|
||||
_, rates[:, i] = convolved_rate(np.squeeze(spike_times[i][0]), sigma)
|
||||
avg_rate = np.mean(rates, axis=1)
|
||||
rate_std = np.std(rates, axis=1)
|
||||
|
||||
@ -139,9 +139,9 @@ def plot_conv_rate(spike_times, sigma=0.05, max_t=30, dt=1e-4):
|
||||
|
||||
def plot_comparison(spike_times, bin_width, sigma, max_t=30., dt=1e-4):
|
||||
times = np.squeeze(spike_times[0][0])
|
||||
time, conv_rate = get_convolved_rate(times, bin_width/np.sqrt(12.))
|
||||
time, inst_rate = get_instantaneous_rate(times)
|
||||
time, binn_rate = get_binned_rate(times, bin_width)
|
||||
time, conv_rate = convolved_rate(times, bin_width/np.sqrt(12.))
|
||||
time, inst_rate = instantaneous_rate(times)
|
||||
time, binn_rate = binned_rate(times, bin_width)
|
||||
|
||||
fig, (ax1, ax2, ax3, ax4) = plt.subplots(4, 1, figsize=cm_size(figure_width, 1.8*figure_height))
|
||||
fig.subplots_adjust(**adjust_fs(fig, left=6.0, right=1.5, bottom=3.0, top=1.0))
|
||||
|
@ -2,6 +2,15 @@ import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
from plotstyle import *
|
||||
|
||||
|
||||
rate = 20.0
|
||||
trials = 10
|
||||
duration = 100.0
|
||||
dt = 0.001
|
||||
drate = 50.0
|
||||
tau = 0.1;
|
||||
|
||||
|
||||
def hompoisson(rate, trials, duration) :
|
||||
spikes = []
|
||||
for k in range(trials) :
|
||||
@ -13,6 +22,7 @@ def hompoisson(rate, trials, duration) :
|
||||
spikes.append( times )
|
||||
return spikes
|
||||
|
||||
|
||||
def inhompoisson(rate, trials, dt) :
|
||||
spikes = []
|
||||
p = rate*dt
|
||||
@ -40,12 +50,27 @@ def pifspikes(input, trials, dt, D=0.1) :
|
||||
spikes.append( times )
|
||||
return spikes
|
||||
|
||||
|
||||
def oupifspikes(rate, trials, duration, dt, D, drate, tau):
|
||||
# OU noise:
|
||||
rng = np.random.RandomState(54637281)
|
||||
time = np.arange(0.0, duration, dt)
|
||||
x = np.zeros(time.shape)+rate
|
||||
n = rng.randn(len(time))*drate*tau/np.sqrt(dt) + rate
|
||||
for k in range(1,len(x)) :
|
||||
x[k] = x[k-1] + (n[k]-x[k-1])*dt/tau
|
||||
x[x<0.0] = 0.0
|
||||
spikes = pifspikes(x, trials, dt, D)
|
||||
return spikes
|
||||
|
||||
|
||||
def isis( spikes ) :
|
||||
isi = []
|
||||
for k in range(len(spikes)) :
|
||||
isi.extend(np.diff(spikes[k]))
|
||||
return isi
|
||||
|
||||
|
||||
def plotisih( ax, isis, binwidth=None ) :
|
||||
if binwidth == None :
|
||||
nperbin = 200.0 # average number of isis per bin
|
||||
@ -61,42 +86,29 @@ def plotisih( ax, isis, binwidth=None ) :
|
||||
ax.set_ylabel('p(ISI)', '1/s')
|
||||
ax.bar( 1000.0*b[:-1], h, bar_fac*1000.0*np.diff(b), **fsA)
|
||||
|
||||
# parameter:
|
||||
rate = 20.0
|
||||
drate = 50.0
|
||||
trials = 10
|
||||
duration = 100.0
|
||||
dt = 0.001
|
||||
tau = 0.1;
|
||||
|
||||
def plot_hom_isih(ax):
|
||||
homspikes = hompoisson(rate, trials, duration)
|
||||
ax.set_xlim(0.0, 150.0)
|
||||
ax.set_ylim(0.0, 31.0)
|
||||
ax.set_xticks(np.arange(0.0, 151.0, 50.0))
|
||||
ax.set_yticks(np.arange(0.0, 31.0, 10.0))
|
||||
plotisih(ax, isis(homspikes), 0.005)
|
||||
|
||||
|
||||
def plot_inhom_isih(ax):
|
||||
inhspikes = oupifspikes(rate, trials, duration, dt, 0.3, drate, tau)
|
||||
ax.set_xlim(0.0, 150.0)
|
||||
ax.set_ylim(0.0, 31.0)
|
||||
ax.set_xticks(np.arange(0.0, 151.0, 50.0))
|
||||
ax.set_yticks(np.arange(0.0, 31.0, 10.0))
|
||||
plotisih(ax, isis(inhspikes), 0.005)
|
||||
|
||||
# homogeneous spike trains:
|
||||
homspikes = hompoisson(rate, trials, duration)
|
||||
|
||||
# OU noise:
|
||||
rng = np.random.RandomState(54637281)
|
||||
time = np.arange(0.0, duration, dt)
|
||||
x = np.zeros(time.shape)+rate
|
||||
n = rng.randn(len(time))*drate*tau/np.sqrt(dt)+rate
|
||||
for k in range(1,len(x)) :
|
||||
x[k] = x[k-1] + (n[k]-x[k-1])*dt/tau
|
||||
x[x<0.0] = 0.0
|
||||
|
||||
# pif spike trains:
|
||||
inhspikes = pifspikes(x, trials, dt, D=0.3)
|
||||
|
||||
fig, (ax1, ax2) = plt.subplots(1, 2)
|
||||
fig.subplots_adjust(**adjust_fs(fig, top=0.5, right=1.5))
|
||||
ax1.set_xlim(0.0, 150.0)
|
||||
ax1.set_ylim(0.0, 31.0)
|
||||
ax1.set_xticks(np.arange(0.0, 151.0, 50.0))
|
||||
ax1.set_yticks(np.arange(0.0, 31.0, 10.0))
|
||||
plotisih(ax1, isis(homspikes), 0.005)
|
||||
|
||||
ax2.set_xlim(0.0, 150.0)
|
||||
ax2.set_ylim(0.0, 31.0)
|
||||
ax2.set_xticks(np.arange(0.0, 151.0, 50.0))
|
||||
ax2.set_yticks(np.arange(0.0, 31.0, 10.0))
|
||||
plotisih(ax2, isis(inhspikes), 0.005)
|
||||
|
||||
plt.savefig('isihexamples.pdf')
|
||||
plt.close()
|
||||
|
||||
if __name__ == "__main__":
|
||||
fig, (ax1, ax2) = plt.subplots(1, 2)
|
||||
fig.subplots_adjust(**adjust_fs(fig, top=0.5, right=1.5))
|
||||
plot_hom_isih(ax1)
|
||||
plot_inhom_isih(ax2)
|
||||
plt.savefig('isihexamples.pdf')
|
||||
plt.close()
|
||||
|
@ -60,8 +60,8 @@ process]{Punktprozess}{point processes}.
|
||||
\texpicture{pointprocessscetch}
|
||||
\titlecaption{\label{pointprocessscetchfig} Statistics of point
|
||||
processes.}{A point process is a sequence of instances in time
|
||||
$t_i$ that can be characterized through the inter-event-intervals
|
||||
$T_i=t_{i+1}-t_i$ and the number of events $n_i$. }
|
||||
$t_i$ that can be also characterized by inter-event intervals
|
||||
$T_i=t_{i+1}-t_i$ and event counts $n_i$.}
|
||||
\end{figure}
|
||||
|
||||
\noindent
|
||||
@ -150,9 +150,8 @@ the interval $T_i$. The parameter $k$ is called the \enterm{lag}
|
||||
maps are distinctly different \figref{returnmapfig}.
|
||||
|
||||
\begin{figure}[tp]
|
||||
\includegraphics[width=1\textwidth]{returnmapexamples}
|
||||
\includegraphics[width=1\textwidth]{serialcorrexamples}
|
||||
\titlecaption{\label{returnmapfig}Interspike interval
|
||||
\titlecaption{\label{returnmapfig}Interspike-interval
|
||||
correlations}{of the spike trains shown in
|
||||
\figref{rasterexamplesfig}. Upper panels show the return maps and
|
||||
lower panels the serial correlations of successive intervals
|
||||
@ -191,7 +190,7 @@ with itself and is always 1.
|
||||
% \begin{figure}[t]
|
||||
% \includegraphics[width=0.48\textwidth]{poissoncounthist100hz10ms}\hfill
|
||||
% \includegraphics[width=0.48\textwidth]{poissoncounthist100hz100ms}
|
||||
% \titlecaption{\label{countstatsfig}Count Statistik.}{}
|
||||
% \titlecaption{\label{countstatsfig}Count statistic.}{}
|
||||
% \end{figure}
|
||||
Counting the number of events $n_i$ (counts) in time windows $i$ of duration $W$
|
||||
yields positive integer random numbers that are commonly quantified
|
||||
|
@ -2,6 +2,15 @@ import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
from plotstyle import *
|
||||
|
||||
|
||||
rate = 20.0
|
||||
trials = 10
|
||||
duration = 2.0
|
||||
dt = 0.001
|
||||
drate = 50.0
|
||||
tau = 0.1;
|
||||
|
||||
|
||||
def hompoisson(rate, trials, duration) :
|
||||
spikes = []
|
||||
for k in range(trials) :
|
||||
@ -13,6 +22,7 @@ def hompoisson(rate, trials, duration) :
|
||||
spikes.append(times)
|
||||
return spikes
|
||||
|
||||
|
||||
def inhompoisson(rate, trials, dt) :
|
||||
spikes = []
|
||||
p = rate*dt
|
||||
@ -40,47 +50,44 @@ def pifspikes(input, trials, dt, D=0.1) :
|
||||
spikes.append(times)
|
||||
return spikes
|
||||
|
||||
# parameter:
|
||||
rate = 20.0
|
||||
drate = 50.0
|
||||
trials = 10
|
||||
duration = 2.0
|
||||
dt = 0.001
|
||||
tau = 0.1;
|
||||
|
||||
# homogeneous spike trains:
|
||||
homspikes = hompoisson(rate, trials, duration)
|
||||
|
||||
# OU noise:
|
||||
rng = np.random.RandomState(54637281)
|
||||
time = np.arange(0.0, duration, dt)
|
||||
x = np.zeros(time.shape)+rate
|
||||
n = rng.randn(len(time))*drate*tau/np.sqrt(dt)+rate
|
||||
for k in range(1,len(x)) :
|
||||
x[k] = x[k-1] + (n[k]-x[k-1])*dt/tau
|
||||
x[x<0.0] = 0.0
|
||||
|
||||
# inhomogeneous spike trains:
|
||||
#inhspikes = inhompoisson(x, trials, dt)
|
||||
# pif spike trains:
|
||||
inhspikes = pifspikes(x, trials, dt, D=0.3)
|
||||
def oupifspikes(rate, trials, duration, dt, D, drate, tau):
|
||||
# OU noise:
|
||||
rng = np.random.RandomState(54637281)
|
||||
time = np.arange(0.0, duration, dt)
|
||||
x = np.zeros(time.shape)+rate
|
||||
n = rng.randn(len(time))*drate*tau/np.sqrt(dt) + rate
|
||||
for k in range(1,len(x)) :
|
||||
x[k] = x[k-1] + (n[k]-x[k-1])*dt/tau
|
||||
x[x<0.0] = 0.0
|
||||
spikes = pifspikes(x, trials, dt, D)
|
||||
return spikes
|
||||
|
||||
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=cm_size(figure_width, 0.5*figure_width))
|
||||
fig.subplots_adjust(**adjust_fs(fig, left=4.0, right=1.0, top=1.2))
|
||||
|
||||
def plot_homogeneous_spikes(ax):
|
||||
homspikes = hompoisson(rate, trials, duration)
|
||||
ax.set_title('stationary')
|
||||
ax.set_xlim(0.0, duration)
|
||||
ax.set_ylim(-0.5, trials-0.5)
|
||||
ax.set_xlabel('Time [s]')
|
||||
ax.set_ylabel('Trial')
|
||||
ax.eventplot(homspikes, colors=[lsA['color']], linelength=0.8, lw=1)
|
||||
|
||||
ax1.set_title('stationary')
|
||||
ax1.set_xlim(0.0, duration)
|
||||
ax1.set_ylim(-0.5, trials-0.5)
|
||||
ax1.set_xlabel('Time [s]')
|
||||
ax1.set_ylabel('Trial')
|
||||
ax1.eventplot(homspikes, colors=[lsA['color']], linelength=0.8, lw=1)
|
||||
|
||||
def plot_inhomogeneous_spikes(ax):
|
||||
inhspikes = oupifspikes(rate, trials, duration, dt, 0.3, drate, tau)
|
||||
ax.set_title('non-stationary')
|
||||
ax.set_xlim(0.0, duration)
|
||||
ax.set_ylim(-0.5, trials-0.5)
|
||||
ax.set_xlabel('Time [s]')
|
||||
ax.set_ylabel('Trial')
|
||||
ax.eventplot(inhspikes, colors=[lsA['color']], linelength=0.8, lw=1)
|
||||
|
||||
ax2.set_title('non-stationary')
|
||||
ax2.set_xlim(0.0, duration)
|
||||
ax2.set_ylim(-0.5, trials-0.5)
|
||||
ax2.set_xlabel('Time [s]')
|
||||
ax2.set_ylabel('Trial')
|
||||
ax2.eventplot(inhspikes, colors=[lsA['color']], linelength=0.8, lw=1)
|
||||
|
||||
plt.savefig('rasterexamples.pdf')
|
||||
plt.close()
|
||||
if __name__ == "__main__":
|
||||
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=cm_size(figure_width, 0.5*figure_width))
|
||||
fig.subplots_adjust(**adjust_fs(fig, left=4.0, right=1.0, top=1.2))
|
||||
plot_homogeneous_spikes(ax1)
|
||||
plot_inhomogeneous_spikes(ax2)
|
||||
plt.savefig('rasterexamples.pdf')
|
||||
plt.close()
|
||||
|
@ -1,94 +0,0 @@
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
from plotstyle import *
|
||||
|
||||
def hompoisson(rate, trials, duration) :
|
||||
spikes = []
|
||||
for k in range(trials) :
|
||||
times = []
|
||||
t = 0.0
|
||||
while t < duration :
|
||||
t += np.random.exponential(1/rate)
|
||||
times.append( t )
|
||||
spikes.append( times )
|
||||
return spikes
|
||||
|
||||
def inhompoisson(rate, trials, dt) :
|
||||
spikes = []
|
||||
p = rate*dt
|
||||
for k in range(trials) :
|
||||
x = np.random.rand(len(rate))
|
||||
times = dt*np.nonzero(x<p)[0]
|
||||
spikes.append( times )
|
||||
return spikes
|
||||
|
||||
|
||||
def pifspikes(input, trials, dt, D=0.1) :
|
||||
vreset = 0.0
|
||||
vthresh = 1.0
|
||||
tau = 1.0
|
||||
spikes = []
|
||||
for k in range(trials) :
|
||||
times = []
|
||||
v = vreset
|
||||
noise = np.sqrt(2.0*D)*np.random.randn(len(input))/np.sqrt(dt)
|
||||
for k in range(len(noise)) :
|
||||
v += (input[k]+noise[k])*dt/tau
|
||||
if v >= vthresh :
|
||||
v = vreset
|
||||
times.append(k*dt)
|
||||
spikes.append( times )
|
||||
return spikes
|
||||
|
||||
|
||||
def isis( spikes ) :
|
||||
isi = []
|
||||
for k in range(len(spikes)) :
|
||||
isi.extend(np.diff(spikes[k]))
|
||||
return np.array( isi )
|
||||
|
||||
|
||||
def plotreturnmap(ax, isis, lag=1, max=1.0) :
|
||||
ax.set_xlabel(r'ISI$_i$', 'ms')
|
||||
ax.set_ylabel(r'ISI$_{i+1}$', 'ms')
|
||||
ax.set_xlim(0.0, 1000.0*max)
|
||||
ax.set_ylim(0.0, 1000.0*max)
|
||||
isiss = isis[isis<max]
|
||||
ax.plot(1000.0*isiss[:-lag], 1000.0*isiss[lag:], clip_on=False, **psAm)
|
||||
|
||||
# parameter:
|
||||
rate = 20.0
|
||||
drate = 50.0
|
||||
trials = 10
|
||||
duration = 10.0
|
||||
dt = 0.001
|
||||
tau = 0.1;
|
||||
|
||||
# homogeneous spike trains:
|
||||
homspikes = hompoisson(rate, trials, duration)
|
||||
|
||||
# OU noise:
|
||||
rng = np.random.RandomState(54637281)
|
||||
time = np.arange(0.0, duration, dt)
|
||||
x = np.zeros(time.shape)+rate
|
||||
n = rng.randn(len(time))*drate*tau/np.sqrt(dt)+rate
|
||||
for k in range(1,len(x)) :
|
||||
x[k] = x[k-1] + (n[k]-x[k-1])*dt/tau
|
||||
x[x<0.0] = 0.0
|
||||
|
||||
# pif spike trains:
|
||||
inhspikes = pifspikes(x, trials, dt, D=0.3)
|
||||
|
||||
fig, (ax1, ax2) = plt.subplots(1, 2)
|
||||
fig.subplots_adjust(**adjust_fs(fig, left=6.5, top=1.5))
|
||||
plotreturnmap(ax1, isis(homspikes), 1, 0.3)
|
||||
ax1.set_xticks(np.arange(0.0, 301.0, 100.0))
|
||||
ax1.set_yticks(np.arange(0.0, 301.0, 100.0))
|
||||
|
||||
plotreturnmap(ax2, isis(inhspikes), 1, 0.3)
|
||||
ax2.set_ylabel('')
|
||||
ax2.set_xticks(np.arange(0.0, 301.0, 100.0))
|
||||
ax2.set_yticks(np.arange(0.0, 301.0, 100.0))
|
||||
|
||||
plt.savefig('returnmapexamples.pdf')
|
||||
plt.close()
|
@ -2,6 +2,16 @@ import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
from plotstyle import *
|
||||
|
||||
|
||||
# parameter:
|
||||
rate = 20.0
|
||||
trials = 10
|
||||
duration = 500.0
|
||||
dt = 0.001
|
||||
drate = 50.0
|
||||
tau = 0.1;
|
||||
|
||||
|
||||
def hompoisson(rate, trials, duration) :
|
||||
spikes = []
|
||||
for k in range(trials) :
|
||||
@ -41,11 +51,35 @@ def pifspikes(input, trials, dt, D=0.1) :
|
||||
spikes.append( times )
|
||||
return spikes
|
||||
|
||||
|
||||
def oupifspikes(rate, trials, duration, dt, D, drate, tau):
|
||||
# OU noise:
|
||||
rng = np.random.RandomState(54637281)
|
||||
time = np.arange(0.0, duration, dt)
|
||||
x = np.zeros(time.shape)+rate
|
||||
n = rng.randn(len(time))*drate*tau/np.sqrt(dt) + rate
|
||||
for k in range(1,len(x)) :
|
||||
x[k] = x[k-1] + (n[k]-x[k-1])*dt/tau
|
||||
x[x<0.0] = 0.0
|
||||
spikes = pifspikes(x, trials, dt, D)
|
||||
return spikes
|
||||
|
||||
|
||||
def isis( spikes ) :
|
||||
isi = []
|
||||
for k in range(len(spikes)) :
|
||||
isi.extend(np.diff(spikes[k]))
|
||||
return np.array( isi )
|
||||
return np.array(isi)
|
||||
|
||||
|
||||
def plotreturnmap(ax, isis, lag=1, max=1.0) :
|
||||
ax.set_xlabel(r'ISI$_i$', 'ms')
|
||||
ax.set_ylabel(r'ISI$_{i+1}$', 'ms')
|
||||
ax.set_xlim(0.0, 1000.0*max)
|
||||
ax.set_ylim(0.0, 1000.0*max)
|
||||
isiss = isis[isis<max]
|
||||
ax.plot(1000.0*isiss[:-lag], 1000.0*isiss[lag:], clip_on=False, **psAm)
|
||||
|
||||
|
||||
def plotserialcorr(ax, isis, maxlag=10) :
|
||||
lags = np.arange(maxlag+1)
|
||||
@ -59,39 +93,39 @@ def plotserialcorr(ax, isis, maxlag=10) :
|
||||
ax.plot([0, 10], [0.0, 0.0], **lsGrid)
|
||||
ax.plot(lags, corr, clip_on=False, zorder=100, **lpsAm)
|
||||
|
||||
|
||||
# parameter:
|
||||
rate = 20.0
|
||||
drate = 50.0
|
||||
trials = 10
|
||||
duration = 500.0
|
||||
dt = 0.001
|
||||
tau = 0.1;
|
||||
|
||||
# homogeneous spike trains:
|
||||
homspikes = hompoisson(rate, trials, duration)
|
||||
def plot_hom_returnmap(ax, spikes):
|
||||
plotreturnmap(ax, isis(spikes)[:200], 1, 0.3)
|
||||
ax.set_xticks(np.arange(0.0, 301.0, 100.0))
|
||||
ax.set_yticks(np.arange(0.0, 301.0, 100.0))
|
||||
|
||||
|
||||
def plot_inhom_returnmap(ax, spikes):
|
||||
plotreturnmap(ax, isis(spikes)[:200], 1, 0.3)
|
||||
ax.set_ylabel('')
|
||||
ax.set_xticks(np.arange(0.0, 301.0, 100.0))
|
||||
ax.set_yticks(np.arange(0.0, 301.0, 100.0))
|
||||
|
||||
# OU noise:
|
||||
rng = np.random.RandomState(54637281)
|
||||
time = np.arange(0.0, duration, dt)
|
||||
x = np.zeros(time.shape)+rate
|
||||
n = rng.randn(len(time))*drate*tau/np.sqrt(dt)+rate
|
||||
for k in range(1,len(x)) :
|
||||
x[k] = x[k-1] + (n[k]-x[k-1])*dt/tau
|
||||
x[x<0.0] = 0.0
|
||||
|
||||
# pif spike trains:
|
||||
inhspikes = pifspikes(x, trials, dt, D=0.3)
|
||||
def plot_hom_serialcorr(ax, spikes):
|
||||
plotserialcorr(ax, isis(spikes))
|
||||
ax.set_ylim(-0.2, 1.0)
|
||||
|
||||
fig, (ax1, ax2) = plt.subplots(1, 2)
|
||||
fig.subplots_adjust(**adjust_fs(fig, left=7.0, right=1.0))
|
||||
|
||||
plotserialcorr(ax1, isis(homspikes))
|
||||
ax1.set_ylim(-0.2, 1.0)
|
||||
def plot_inhom_serialcorr(ax, spikes):
|
||||
plotserialcorr(ax, isis(spikes))
|
||||
ax.set_ylabel('')
|
||||
ax.set_ylim(-0.2, 1.0)
|
||||
|
||||
plotserialcorr(ax2, isis(inhspikes))
|
||||
ax2.set_ylabel('')
|
||||
ax2.set_ylim(-0.2, 1.0)
|
||||
|
||||
plt.savefig('serialcorrexamples.pdf')
|
||||
plt.close()
|
||||
if __name__ == "__main__":
|
||||
homspikes = hompoisson(rate, trials, duration)
|
||||
inhomspikes = oupifspikes(rate, trials, duration, dt, 0.3, drate, tau)
|
||||
fig, axs = plt.subplots(2, 2, figsize=cm_size(figure_width, 1.8*figure_height))
|
||||
fig.subplots_adjust(**adjust_fs(fig, left=6.5, right=1.5))
|
||||
plot_hom_returnmap(axs[0,0], homspikes)
|
||||
plot_inhom_returnmap(axs[0,1], inhomspikes)
|
||||
plot_hom_serialcorr(axs[1,0], homspikes)
|
||||
plot_inhom_serialcorr(axs[1,1], inhomspikes)
|
||||
plt.savefig('serialcorrexamples.pdf')
|
||||
plt.close()
|
||||
|
Reference in New Issue
Block a user