[projects] little updates
This commit is contained in:
parent
ae51f8c3e1
commit
e826428446
@ -11,14 +11,12 @@ no statistics, but kmeans
|
||||
|
||||
project_fano_slope
|
||||
OK, difficult
|
||||
Add t-test
|
||||
|
||||
project_fano_test
|
||||
OK -
|
||||
|
||||
project_fano_time
|
||||
OK, difficult
|
||||
Add t-test
|
||||
OK, medium-difficult
|
||||
|
||||
project_ficurves
|
||||
OK, medium
|
||||
|
@ -1,14 +1,10 @@
|
||||
BASENAME=$(subst project_,,$(notdir $(CURDIR)))
|
||||
|
||||
latex:
|
||||
pdflatex $(BASENAME).tex
|
||||
pdflatex $(BASENAME).tex
|
||||
|
||||
|
||||
pdf: $(BASENAME).pdf
|
||||
|
||||
$(BASENAME).pdf : $(BASENAME).tex ../header.tex ../instructions.tex
|
||||
pdflatex -interaction=scrollmode $< | tee /dev/stderr | fgrep -q "Rerun to get cross-references right" && pdflatex -interaction=scrollmode $< || true
|
||||
pdflatex -interaction=scrollmode $< | tee /dev/stderr | fgrep -q "Rerun to get" && pdflatex -interaction=scrollmode $< || true
|
||||
|
||||
|
||||
watch :
|
||||
@ -19,7 +15,11 @@ clean:
|
||||
rm -rf *.log *.aux *.out auto
|
||||
rm -f `basename *.tex .tex`.pdf
|
||||
rm -f *.zip
|
||||
pdflatex $(BASENAME).tex
|
||||
|
||||
latex:
|
||||
pdflatex $(BASENAME).tex
|
||||
|
||||
zip: latex
|
||||
zip: pdf
|
||||
rm -f zip $(BASENAME).zip
|
||||
zip $(BASENAME).zip *.pdf *.m data/* $(ZIPFILES)
|
||||
|
@ -1,6 +1,6 @@
|
||||
\documentclass[a4paper,12pt,pdftex]{exam}
|
||||
|
||||
\newcommand{\ptitle}{Stimulus discrimination}
|
||||
\newcommand{\ptitle}{Stimulus discrimination: gain}
|
||||
\input{../header.tex}
|
||||
\firstpagefooter{Supervisor: Jan Benda}{phone: 29 74573}%
|
||||
{email: jan.benda@uni-tuebingen.de}
|
||||
@ -95,10 +95,11 @@ spikes = lifboltzmanspikes(trials, input, tmax, gain);
|
||||
the neuron? Plot them for the four different values of the gain
|
||||
used in (a).
|
||||
|
||||
\part Think about a measure based on the spike-count histograms
|
||||
that quantifies how well the two stimuli can be distinguished
|
||||
based on the spike counts. Plot the dependence of this measure as
|
||||
a function of the gain of the neuron.
|
||||
\part \label{discrmeasure} Think about a measure based on the
|
||||
spike-count histograms that quantifies how well the two stimuli
|
||||
can be distinguished based on the spike counts. Plot the
|
||||
dependence of this measure as a function of the gain of the
|
||||
neuron.
|
||||
%
|
||||
For which gains can the two stimuli perfectly discriminated?
|
||||
|
||||
@ -110,6 +111,11 @@ spikes = lifboltzmanspikes(trials, input, tmax, gain);
|
||||
results in the best discrimination performance. How can you
|
||||
quantify ``best discrimination'' performance?
|
||||
|
||||
\part Another way to quantify the discriminability of the spike
|
||||
counts in response to the two stimuli is to apply an appropriate
|
||||
statistical test and check for significant differences. How does
|
||||
this compare to your findings from (\ref{discrmeasure})?
|
||||
|
||||
\end{parts}
|
||||
|
||||
\end{questions}
|
||||
|
@ -1,6 +1,6 @@
|
||||
\documentclass[a4paper,12pt,pdftex]{exam}
|
||||
|
||||
\newcommand{\ptitle}{Stimulus discrimination}
|
||||
\newcommand{\ptitle}{Stimulus discrimination: time}
|
||||
\input{../header.tex}
|
||||
\firstpagefooter{Supervisor: Jan Benda}{phone: 29 74573}%
|
||||
{email: jan.benda@uni-tuebingen.de}
|
||||
@ -87,10 +87,11 @@ input = 15.0; % I_2
|
||||
observation time $T$? Plot them for four different values of $T$
|
||||
(use values of 10\,ms, 100\,ms, 300\,ms and 1\,s).
|
||||
|
||||
\part Think about a measure based on the spike-count histograms
|
||||
that quantifies how well the two stimuli can be distinguished
|
||||
based on the spike counts. Plot the dependence of this measure as
|
||||
a function of the observation time $T$.
|
||||
\part \label{discrmeasure} Think about a measure based on the
|
||||
spike-count histograms that quantifies how well the two stimuli
|
||||
can be distinguished based on the spike counts. Plot the
|
||||
dependence of this measure as a function of the observation time
|
||||
$T$.
|
||||
|
||||
For which observation times can the two stimuli perfectly
|
||||
discriminated?
|
||||
@ -103,6 +104,11 @@ input = 15.0; % I_2
|
||||
results in the best discrimination performance. How can you
|
||||
quantify ``best discrimination'' performance?
|
||||
|
||||
\part Another way to quantify the discriminability of the spike
|
||||
counts in response to the two stimuli is to apply an appropriate
|
||||
statistical test and check for significant differences. How does
|
||||
this compare to your findings from (\ref{discrmeasure})?
|
||||
|
||||
\end{parts}
|
||||
|
||||
\end{questions}
|
||||
|
@ -96,7 +96,7 @@ time = [0.0:dt:tmax]; % t_i
|
||||
|
||||
Write a function that implements this leaky integrate-and-fire
|
||||
neuron by expanding the function for the passive neuron
|
||||
appropriate. The function returns a vector of spike times.
|
||||
appropriately. The function returns a vector of spike times.
|
||||
|
||||
Illustrate how this model works by appropriate plot(s) and
|
||||
input(s) $E(t)$, e.g. constant inputs lower and higher than the
|
||||
@ -115,8 +115,8 @@ time = [0.0:dt:tmax]; % t_i
|
||||
r = \frac{n-1}{t_n - t_1}
|
||||
\end{equation}
|
||||
What do you observe? Does the firing rate encode the frequency of
|
||||
the stimulus? Look at the spike trains in response the sine waves
|
||||
to figure out what is going on.
|
||||
the stimulus? Look at the spike trains in response to the sine
|
||||
waves to figure out what is going on.
|
||||
\end{parts}
|
||||
|
||||
\end{questions}
|
||||
|
@ -63,8 +63,8 @@ spikes = lifspikes(trials, current, tmax, Dnoise);
|
||||
of this neuron?
|
||||
|
||||
\part Compute the $f$-$I$ curves of neurons with various noise
|
||||
strengths \texttt{Dnoise}. Use for example $D_{noise} = 1e-3$,
|
||||
$1e-2$, and $1e-1$.
|
||||
strengths \texttt{Dnoise}. Use for example $D_{noise} = 10^{-3}$,
|
||||
$10^{-2}$, and $10^{-1}$.
|
||||
|
||||
How does the intrinsic noise influence the response curve?
|
||||
|
||||
@ -76,6 +76,8 @@ spikes = lifspikes(trials, current, tmax, Dnoise);
|
||||
responses of the four different neurons to the same input, or by
|
||||
the same resulting mean firing rate.
|
||||
|
||||
How do the responses differ?
|
||||
|
||||
\part Let's now use as an input to the neuron a 1\,s long sine
|
||||
wave $I(t) = I_0 + A \sin(2\pi f t)$ with offset current $I_0$,
|
||||
amplitude $A$, and frequency $f$. Set $I_0=5$, $A=4$, and
|
||||
|
@ -32,9 +32,8 @@ In you zip file you find a natural image called {\tt natimg.jpg}.
|
||||
\begin{thebibliography}{1}
|
||||
\bibitem{BG} Buchsbaum, G., \& Gottschalk, A. (1983). Trichromacy,
|
||||
opponent colours coding and optimum colour information transmission
|
||||
in the retina. Proceedings of the Royal Society of London. Series B,
|
||||
Containing Papers of a Biological Character. Royal Society (Great
|
||||
Britain), 220(1218), 89–113.
|
||||
in the retina. Proceedings of the Royal Society of London B. Royal
|
||||
Society (Great Britain), 220(1218), 89–113.
|
||||
\end{thebibliography}
|
||||
|
||||
|
||||
|
Reference in New Issue
Block a user