asignment text for adaptation project
This commit is contained in:
parent
2ed4d50474
commit
ceafdf3fcf
10
projects/project_adaptation_fit/Makefile
Normal file
10
projects/project_adaptation_fit/Makefile
Normal file
@ -0,0 +1,10 @@
|
||||
latex:
|
||||
pdflatex *.tex > /dev/null
|
||||
pdflatex *.tex > /dev/null
|
||||
|
||||
clean:
|
||||
rm -rf *.log *.aux *.zip *.out auto
|
||||
rm -f `basename *.tex .tex`.pdf
|
||||
|
||||
zip: latex
|
||||
zip `basename *.tex .tex`.zip *.pdf *.dat *.mat
|
70
projects/project_adaptation_fit/adaptation_fit.tex
Executable file
70
projects/project_adaptation_fit/adaptation_fit.tex
Executable file
@ -0,0 +1,70 @@
|
||||
\documentclass[addpoints,11pt]{exam}
|
||||
\usepackage{url}
|
||||
\usepackage{color}
|
||||
\usepackage{hyperref}
|
||||
|
||||
\pagestyle{headandfoot}
|
||||
\runningheadrule
|
||||
\firstpageheadrule
|
||||
\firstpageheader{Scientific Computing}{Project Assignment}{11/05/2014
|
||||
-- 11/06/2014}
|
||||
%\runningheader{Homework 01}{Page \thepage\ of \numpages}{23. October 2014}
|
||||
\firstpagefooter{}{}{}
|
||||
\runningfooter{}{}{}
|
||||
\pointsinmargin
|
||||
\bracketedpoints
|
||||
|
||||
%\printanswers
|
||||
%\shadedsolutions
|
||||
|
||||
|
||||
\begin{document}
|
||||
%%%%%%%%%%%%%%%%%%%%% Submission instructions %%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\sffamily
|
||||
% \begin{flushright}
|
||||
% \gradetable[h][questions]
|
||||
% \end{flushright}
|
||||
|
||||
\begin{center}
|
||||
\input{../disclaimer.tex}
|
||||
\end{center}
|
||||
|
||||
%%%%%%%%%%%%%% Questions %%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\section*{Estimating the time-constant of adaptation.}
|
||||
Stimulating a neuron with a constant stimulus for an extended time
|
||||
often leads to a strong initial response that relaxes over time. This
|
||||
process is called adaptation and is ubiquitous. Your task here is to
|
||||
estimate the time-constant of the firing-rate adaptation in P-unit
|
||||
electroreceptors of the weakly electric fish \textit{Apteronotus
|
||||
leptorhynchus}.
|
||||
|
||||
\begin{questions}
|
||||
\question In the accompanying datasets you find the
|
||||
\textit{spike\_times} of an P-unit electrorecptor to a stimulus of a
|
||||
certain intensity, i.e. the \textit{contrast}. The contrast is also
|
||||
part of the file name itself.
|
||||
\begin{parts}
|
||||
\part Estimate for each stimulus intensity the
|
||||
PSTH and plot it. You will see that there are three parts. (i)
|
||||
The first 200 ms is the baseline (no stimulus) activity. (ii)
|
||||
During the next 1000 ms the stimulus was switched on. (iii) After
|
||||
stimulus offset the neuronal activity was recorded for further 825
|
||||
ms.
|
||||
\part Estimate the adaptation time-constant of the adaptation for
|
||||
both the stimulus on- and offset. To do this fit an exponential
|
||||
function to the data. For the decay use:
|
||||
\begin{equation}
|
||||
f_{A,\tau,y_0}(t) = y_0 + A \cdot e^{-\frac{t}{\tau}},
|
||||
\end{equation}
|
||||
where $y_0$ the offset, $A$ the amplitude, $t$ the time, $\tau$
|
||||
the time-constant.
|
||||
For the increasing phases use an exponential of the form:
|
||||
\begin{equation}
|
||||
f_{A,\tau, y_0}(t) = y_0 + A \cdot \left(1 - e^{-\frac{t}{\tau}}\right ),
|
||||
\end{equation}
|
||||
\part Plot the decays into the data.
|
||||
\part Plot the estimated time-constants as a function of stimulus intensity.
|
||||
\end{parts}
|
||||
\end{questions}
|
||||
|
||||
\end{document}
|
Reference in New Issue
Block a user