Merge branch 'master' of https://whale.am28.uni-tuebingen.de/git/teaching/scientificComputing
This commit is contained in:
commit
cc332ee25d
@ -1,11 +1,11 @@
|
|||||||
function [bootsem, mu] = bootstrapmean( x, resample )
|
function [bootsem, mu] = bootstrapmean(x, resample)
|
||||||
% computes standard error by bootstrapping the data
|
% computes standard error by bootstrapping the data
|
||||||
% x: vector with data
|
% x: vector with data
|
||||||
% resample: number of resamplings
|
% resample: number of resamplings
|
||||||
% returns:
|
% returns:
|
||||||
% bootsem: the standard error of the mean
|
% bootsem: the standard error of the mean
|
||||||
% mu: the bootstrapped means as a vector
|
% mu: the bootstrapped means as a vector
|
||||||
mu = zeros( resample, 1 );
|
mu = zeros(resample, 1);
|
||||||
nsamples = length(x);
|
nsamples = length(x);
|
||||||
for i = 1:resample
|
for i = 1:resample
|
||||||
% resample:
|
% resample:
|
||||||
@ -13,5 +13,5 @@ function [bootsem, mu] = bootstrapmean( x, resample )
|
|||||||
% compute statistics on sample:
|
% compute statistics on sample:
|
||||||
mu(i) = mean(xr);
|
mu(i) = mean(xr);
|
||||||
end
|
end
|
||||||
bootsem = std( mu );
|
bootsem = std(mu);
|
||||||
end
|
end
|
||||||
|
@ -1,36 +1,36 @@
|
|||||||
%% (b) load the data:
|
%% (b) load the data:
|
||||||
load( 'thymusglandweights.dat' );
|
load('thymusglandweights.dat');
|
||||||
nsamples = 80;
|
nsamples = 80;
|
||||||
x = thymusglandweights(1:nsamples);
|
x = thymusglandweights(1:nsamples);
|
||||||
|
|
||||||
%% (c) mean, sem and hist:
|
%% (c) mean, sem and hist:
|
||||||
sem = std(x)/sqrt(nsamples);
|
sem = std(x)/sqrt(nsamples);
|
||||||
fprintf( 'Mean of the data set = %.2fmg\n', mean(x) );
|
fprintf('Mean of the data set = %.2fmg\n', mean(x));
|
||||||
fprintf( 'SEM of the data set = %.2fmg\n', sem );
|
fprintf('SEM of the data set = %.2fmg\n', sem);
|
||||||
hist(x,20)
|
hist(x,20)
|
||||||
xlabel('x')
|
xlabel('x')
|
||||||
ylabel('count')
|
ylabel('count')
|
||||||
savefigpdf( gcf, 'bootstraptymus-datahist.pdf', 6, 5 );
|
savefigpdf(gcf, 'bootstraptymus-datahist.pdf', 6, 5);
|
||||||
pause( 2.0 )
|
pause(2.0)
|
||||||
|
|
||||||
%% (d) bootstrap the mean:
|
%% (d) bootstrap the mean:
|
||||||
resample = 500;
|
resample = 500;
|
||||||
[bootsem, mu] = bootstrapmean( x, resample );
|
[bootsem, mu] = bootstrapmean(x, resample);
|
||||||
hist( mu, 20 );
|
hist(mu, 20);
|
||||||
xlabel('mean(x)')
|
xlabel('mean(x)')
|
||||||
ylabel('count')
|
ylabel('count')
|
||||||
savefigpdf( gcf, 'bootstraptymus-meanhist.pdf', 6, 5 );
|
savefigpdf(gcf, 'bootstraptymus-meanhist.pdf', 6, 5);
|
||||||
fprintf( ' bootstrap standard error: %.3f\n', bootsem );
|
fprintf(' bootstrap standard error: %.3f\n', bootsem);
|
||||||
fprintf( 'theoretical standard error: %.3f\n', sem );
|
fprintf('theoretical standard error: %.3f\n', sem);
|
||||||
|
|
||||||
%% (e) confidence interval:
|
%% (e) confidence interval:
|
||||||
q = quantile(mu, [0.025, 0.975]);
|
q = quantile(mu, [0.025, 0.975]);
|
||||||
fprintf( '95%% confidence interval of the mean from %.2fmg to %.2fmg\n', q(1), q(2) );
|
fprintf('95%% confidence interval of the mean from %.2fmg to %.2fmg\n', q(1), q(2));
|
||||||
pause( 2.0 )
|
pause(2.0)
|
||||||
|
|
||||||
%% (f): dependence on sample size:
|
%% (f): dependence on sample size:
|
||||||
nsamplesrange = 10:10:1000;
|
nsamplesrange = 10:10:1000;
|
||||||
bootsems = zeros( length(nsamplesrange),1);
|
bootsems = zeros(length(nsamplesrange), 1);
|
||||||
for n=1:length(nsamplesrange)
|
for n=1:length(nsamplesrange)
|
||||||
nsamples = nsamplesrange(n);
|
nsamples = nsamplesrange(n);
|
||||||
% [bootsems(n), mu] = bootstrapmean(x, resample);
|
% [bootsems(n), mu] = bootstrapmean(x, resample);
|
||||||
@ -43,5 +43,5 @@ hold off
|
|||||||
xlabel('sample size')
|
xlabel('sample size')
|
||||||
ylabel('SEM')
|
ylabel('SEM')
|
||||||
legend('bootsrap', 'theory')
|
legend('bootsrap', 'theory')
|
||||||
savefigpdf( gcf, 'bootstraptymus-samples.pdf', 6, 5 );
|
savefigpdf(gcf, 'bootstraptymus-samples.pdf', 6, 5);
|
||||||
|
|
||||||
|
@ -11,12 +11,12 @@ for i=1:nperm
|
|||||||
end
|
end
|
||||||
|
|
||||||
%% (b) pdf of the correlation coefficients:
|
%% (b) pdf of the correlation coefficients:
|
||||||
[hb,bb] = hist(rb, 20 );
|
[hb,bb] = hist(rb, 20);
|
||||||
hb = hb/sum(hb)/(bb(2)-bb(1)); % normalization
|
hb = hb/sum(hb)/(bb(2)-bb(1)); % normalization
|
||||||
|
|
||||||
%% (c) significance:
|
%% (c) significance:
|
||||||
rbq = quantile(rb, 0.05);
|
rbq = quantile(rb, 0.05);
|
||||||
fprintf('correlation coefficient at 5%% significance = %.2f\n', rbq );
|
fprintf('correlation coefficient at 5%% significance = %.2f\n', rbq);
|
||||||
if rbq > 0.0
|
if rbq > 0.0
|
||||||
fprintf('--> correlation r=%.2f is significant\n', rd);
|
fprintf('--> correlation r=%.2f is significant\n', rd);
|
||||||
else
|
else
|
||||||
@ -28,10 +28,10 @@ hold on;
|
|||||||
bar(b, h, 'facecolor', [0.5 0.5 0.5]);
|
bar(b, h, 'facecolor', [0.5 0.5 0.5]);
|
||||||
bar(bb, hb, 'facecolor', 'b');
|
bar(bb, hb, 'facecolor', 'b');
|
||||||
bar(bb(bb<=rbq), hb(bb<=rbq), 'facecolor', 'r');
|
bar(bb(bb<=rbq), hb(bb<=rbq), 'facecolor', 'r');
|
||||||
plot( [rd rd], [0 4], 'r', 'linewidth', 2 );
|
plot([rd rd], [0 4], 'r', 'linewidth', 2);
|
||||||
xlim([-0.25 0.75])
|
xlim([-0.25 0.75])
|
||||||
xlabel('Correlation coefficient');
|
xlabel('Correlation coefficient');
|
||||||
ylabel('Probability density');
|
ylabel('Probability density');
|
||||||
hold off;
|
hold off;
|
||||||
|
|
||||||
savefigpdf( gcf, 'correlationbootstrap.pdf', 12, 6 );
|
savefigpdf(gcf, 'correlationbootstrap.pdf', 12, 6);
|
||||||
|
@ -6,7 +6,7 @@ y = randn(n, 1) + a*x;
|
|||||||
|
|
||||||
%% (b) scatter plot:
|
%% (b) scatter plot:
|
||||||
subplot(1, 2, 1);
|
subplot(1, 2, 1);
|
||||||
plot(x, a*x, 'r', 'linewidth', 3 );
|
plot(x, a*x, 'r', 'linewidth', 3);
|
||||||
hold on
|
hold on
|
||||||
%scatter(x, y ); % either scatter ...
|
%scatter(x, y ); % either scatter ...
|
||||||
plot(x, y, 'o', 'markersize', 2 ); % ... or plot - same plot.
|
plot(x, y, 'o', 'markersize', 2 ); % ... or plot - same plot.
|
||||||
@ -32,12 +32,12 @@ for i=1:nperm
|
|||||||
end
|
end
|
||||||
|
|
||||||
%% (g) pdf of the correlation coefficients:
|
%% (g) pdf of the correlation coefficients:
|
||||||
[h,b] = hist(rs, 20 );
|
[h,b] = hist(rs, 20);
|
||||||
h = h/sum(h)/(b(2)-b(1)); % normalization
|
h = h/sum(h)/(b(2)-b(1)); % normalization
|
||||||
|
|
||||||
%% (h) significance:
|
%% (h) significance:
|
||||||
rq = quantile(rs, 0.95);
|
rq = quantile(rs, 0.95);
|
||||||
fprintf('correlation coefficient at 5%% significance = %.2f\n', rq );
|
fprintf('correlation coefficient at 5%% significance = %.2f\n', rq);
|
||||||
if rd >= rq
|
if rd >= rq
|
||||||
fprintf('--> correlation r=%.2f is significant\n', rd);
|
fprintf('--> correlation r=%.2f is significant\n', rd);
|
||||||
else
|
else
|
||||||
@ -49,10 +49,10 @@ subplot(1, 2, 2)
|
|||||||
hold on;
|
hold on;
|
||||||
bar(b, h, 'facecolor', 'b');
|
bar(b, h, 'facecolor', 'b');
|
||||||
bar(b(b>=rq), h(b>=rq), 'facecolor', 'r');
|
bar(b(b>=rq), h(b>=rq), 'facecolor', 'r');
|
||||||
plot( [rd rd], [0 4], 'r', 'linewidth', 2 );
|
plot( [rd rd], [0 4], 'r', 'linewidth', 2);
|
||||||
xlim([-0.25 0.25])
|
xlim([-0.25 0.25])
|
||||||
xlabel('Correlation coefficient');
|
xlabel('Correlation coefficient');
|
||||||
ylabel('Probability density of H0');
|
ylabel('Probability density of H0');
|
||||||
hold off;
|
hold off;
|
||||||
|
|
||||||
savefigpdf( gcf, 'correlationsignificance.pdf', 12, 6 );
|
savefigpdf(gcf, 'correlationsignificance.pdf', 12, 6);
|
||||||
|
@ -15,7 +15,7 @@
|
|||||||
\else
|
\else
|
||||||
\newcommand{\stitle}{}
|
\newcommand{\stitle}{}
|
||||||
\fi
|
\fi
|
||||||
\header{{\bfseries\large Exercise 9\stitle}}{{\bfseries\large Bootstrap}}{{\bfseries\large November 20th, 2018}}
|
\header{{\bfseries\large Exercise 9\stitle}}{{\bfseries\large Bootstrap}}{{\bfseries\large December 9th, 2019}}
|
||||||
\firstpagefooter{Prof. Dr. Jan Benda}{Phone: 29 74573}{Email:
|
\firstpagefooter{Prof. Dr. Jan Benda}{Phone: 29 74573}{Email:
|
||||||
jan.benda@uni-tuebingen.de}
|
jan.benda@uni-tuebingen.de}
|
||||||
\runningfooter{}{\thepage}{}
|
\runningfooter{}{\thepage}{}
|
||||||
@ -86,7 +86,7 @@ jan.benda@uni-tuebingen.de}
|
|||||||
|
|
||||||
\begin{questions}
|
\begin{questions}
|
||||||
|
|
||||||
\question \qt{Bootstrap of the standard error of the mean}
|
\question \qt{Bootstrap the standard error of the mean}
|
||||||
We want to compute the standard error of the mean of a data set by
|
We want to compute the standard error of the mean of a data set by
|
||||||
means of the bootstrap method and compare the result with the formula
|
means of the bootstrap method and compare the result with the formula
|
||||||
``standard deviation divided by the square-root of $n$''.
|
``standard deviation divided by the square-root of $n$''.
|
||||||
@ -118,24 +118,25 @@ means of the bootstrap method and compare the result with the formula
|
|||||||
\end{solution}
|
\end{solution}
|
||||||
|
|
||||||
|
|
||||||
\question \qt{Student t-distribution}
|
\question \qt{Student t-distribution}
|
||||||
The distribution of Student's t, $t=\bar x/(\sigma_x/\sqrt{m})$, the
|
The distribution of Student's t, $t=\bar x/(\sigma_x/\sqrt{n})$, the
|
||||||
estimated mean of a data set divided by the estimated standard error
|
estimated mean $\bar x$ of a data set of size $n$ divided by the
|
||||||
of the mean, is not a normal distribution but a Student-t distribution.
|
estimated standard error of the mean $\sigma_x/\sqrt{n}$, where
|
||||||
We want to compute the Student-t distribution and compare it with the
|
$\sigma_x$ is the estimated standard deviation, is not a normal
|
||||||
normal distribution.
|
distribution but a Student-t distribution. We want to compute the
|
||||||
|
Student-t distribution and compare it with the normal distribution.
|
||||||
\begin{parts}
|
\begin{parts}
|
||||||
\part Generate 100000 normally distributed random numbers.
|
\part Generate 100000 normally distributed random numbers.
|
||||||
\part Draw from these data 1000 samples of size $n=3$, 5, 10, and 50.
|
\part Draw from these data 1000 samples of size $n=3$, 5, 10, and
|
||||||
\part Compute the mean $\bar x$ of the samples and plot the
|
50. For each sample size $n$ ...
|
||||||
|
\part ... compute the mean $\bar x$ of the samples and plot the
|
||||||
probability density of these means.
|
probability density of these means.
|
||||||
\part Compare the resulting probability densities with corresponding
|
\part ... compare the resulting probability densities with corresponding
|
||||||
normal distributions.
|
normal distributions.
|
||||||
\part Compute in addition $t=\bar x/(\sigma_x/\sqrt{n})$ (standard
|
\part ... compute Student's $t=\bar x/(\sigma_x/\sqrt{n})$ and compare its
|
||||||
deviation of the samples $\sigma_x$) and compare their distribution
|
distribution with the normal distribution with standard deviation of
|
||||||
with the normal distribution with standard deviation of one. Is $t$
|
one. Is $t$ normally distributed? Under which conditions is $t$
|
||||||
normally distributed? Under which conditions is $t$ normally
|
normally distributed?
|
||||||
distributed?
|
|
||||||
\end{parts}
|
\end{parts}
|
||||||
\newsolutionpage
|
\newsolutionpage
|
||||||
\begin{solution}
|
\begin{solution}
|
||||||
@ -167,16 +168,16 @@ y = randn(n, 1) + a*x;
|
|||||||
\part Compute and plot the probability density of these correlation
|
\part Compute and plot the probability density of these correlation
|
||||||
coefficients.
|
coefficients.
|
||||||
\part Is the correlation of the original data set significant?
|
\part Is the correlation of the original data set significant?
|
||||||
\part What does significance of the correlation mean?
|
\part What does ``significance of the correlation'' mean?
|
||||||
\part Vary the sample size \code{n} and compute in the same way the
|
% \part Vary the sample size \code{n} and compute in the same way the
|
||||||
significance of the correlation.
|
% significance of the correlation.
|
||||||
\end{parts}
|
\end{parts}
|
||||||
\begin{solution}
|
\begin{solution}
|
||||||
\lstinputlisting{correlationsignificance.m}
|
\lstinputlisting{correlationsignificance.m}
|
||||||
\includegraphics[width=1\textwidth]{correlationsignificance}
|
\includegraphics[width=1\textwidth]{correlationsignificance}
|
||||||
\end{solution}
|
\end{solution}
|
||||||
|
|
||||||
\question \qt{Bootstrap of the correlation coefficient}
|
\question \qt{Bootstrap the correlation coefficient}
|
||||||
The permutation test generates the distribution of the null hypothesis
|
The permutation test generates the distribution of the null hypothesis
|
||||||
of uncorrelated data and we check whether the correlation coefficient
|
of uncorrelated data and we check whether the correlation coefficient
|
||||||
of the data differs significantly from this
|
of the data differs significantly from this
|
||||||
@ -184,7 +185,7 @@ distribution. Alternatively we can bootstrap the data while keeping
|
|||||||
the pairs and determine the confidence interval of the correlation
|
the pairs and determine the confidence interval of the correlation
|
||||||
coefficient of the data. If this differs significantly from a
|
coefficient of the data. If this differs significantly from a
|
||||||
correlation coefficient of zero we can conclude that the correlation
|
correlation coefficient of zero we can conclude that the correlation
|
||||||
coefficient of the data quantifies indeed a correlated data.
|
coefficient of the data indeed quantifies correlated data.
|
||||||
|
|
||||||
We take the same data set that we have generated in exercise
|
We take the same data set that we have generated in exercise
|
||||||
\ref{permutationtest} (\ref{permutationtestdata}).
|
\ref{permutationtest} (\ref{permutationtestdata}).
|
||||||
|
@ -6,9 +6,9 @@ for nsamples=[3 5 10 50]
|
|||||||
nsamples
|
nsamples
|
||||||
%% compute mean, standard deviation and t:
|
%% compute mean, standard deviation and t:
|
||||||
nmeans = 10000;
|
nmeans = 10000;
|
||||||
means = zeros( nmeans, 1 );
|
means = zeros(nmeans, 1);
|
||||||
sdevs = zeros( nmeans, 1 );
|
sdevs = zeros(nmeans, 1);
|
||||||
students = zeros( nmeans, 1 );
|
students = zeros(nmeans, 1 );
|
||||||
for i=1:nmeans
|
for i=1:nmeans
|
||||||
sample = x(randi(n, nsamples, 1));
|
sample = x(randi(n, nsamples, 1));
|
||||||
means(i) = mean(sample);
|
means(i) = mean(sample);
|
||||||
@ -34,7 +34,7 @@ for nsamples=[3 5 10 50]
|
|||||||
bar(b, h, 'facecolor', 'b', 'edgecolor', 'b')
|
bar(b, h, 'facecolor', 'b', 'edgecolor', 'b')
|
||||||
hold on
|
hold on
|
||||||
plot(xg, pm, 'r', 'linewidth', 2)
|
plot(xg, pm, 'r', 'linewidth', 2)
|
||||||
title( sprintf('sample size = %d', nsamples) );
|
title(sprintf('sample size = %d', nsamples));
|
||||||
xlim( [-3, 3] );
|
xlim( [-3, 3] );
|
||||||
xlabel('Mean');
|
xlabel('Mean');
|
||||||
ylabel('pdf');
|
ylabel('pdf');
|
||||||
@ -47,12 +47,12 @@ for nsamples=[3 5 10 50]
|
|||||||
bar(b, h, 'facecolor', 'b', 'edgecolor', 'b')
|
bar(b, h, 'facecolor', 'b', 'edgecolor', 'b')
|
||||||
hold on
|
hold on
|
||||||
plot(xg, pt, 'r', 'linewidth', 2)
|
plot(xg, pt, 'r', 'linewidth', 2)
|
||||||
title( sprintf('sample size = %d', nsamples) );
|
title(sprintf('sample size = %d', nsamples));
|
||||||
xlim( [-8, 8] );
|
xlim( [-8, 8] );
|
||||||
xlabel('Student-t');
|
xlabel('Student-t');
|
||||||
ylabel('pdf');
|
ylabel('pdf');
|
||||||
hold off;
|
hold off;
|
||||||
|
|
||||||
savefigpdf( gcf, sprintf('tdistribution-n%02d.pdf', nsamples), 14, 5 );
|
savefigpdf(gcf, sprintf('tdistribution-n%02d.pdf', nsamples), 14, 5);
|
||||||
pause( 3.0 )
|
pause( 3.0 )
|
||||||
end
|
end
|
||||||
|
@ -84,9 +84,11 @@ standard errors and confidence intervals).
|
|||||||
Bootstrapping methods create bootstrapped samples from a SRS by
|
Bootstrapping methods create bootstrapped samples from a SRS by
|
||||||
resampling. The bootstrapped samples are used to estimate the sampling
|
resampling. The bootstrapped samples are used to estimate the sampling
|
||||||
distribution of a statistical measure. The bootstrapped samples have
|
distribution of a statistical measure. The bootstrapped samples have
|
||||||
the same size as the original sample and are created by randomly drawing with
|
the same size as the original sample and are created by randomly
|
||||||
replacement. That is, each value of the original sample can occur
|
drawing with replacement. That is, each value of the original sample
|
||||||
once, multiple time, or not at all in a bootstrapped sample.
|
can occur once, multiple time, or not at all in a bootstrapped
|
||||||
|
sample. This can be implemented by generating random indices into the
|
||||||
|
data set using the \code{randi()} function.
|
||||||
|
|
||||||
|
|
||||||
\section{Bootstrap of the standard error}
|
\section{Bootstrap of the standard error}
|
||||||
@ -165,13 +167,13 @@ data points $(x_i, y_i)$. By calculating the correlation coefficient
|
|||||||
we can quantify how strongly $y$ depends on $x$. The correlation
|
we can quantify how strongly $y$ depends on $x$. The correlation
|
||||||
coefficient alone, however, does not tell whether the correlation is
|
coefficient alone, however, does not tell whether the correlation is
|
||||||
significantly different from a random correlation. The null hypothesis
|
significantly different from a random correlation. The null hypothesis
|
||||||
for such a situation would be that $y$ does not depend on $x$. In
|
for such a situation is that $y$ does not depend on $x$. In
|
||||||
order to perform a permutation test, we need to destroy the
|
order to perform a permutation test, we need to destroy the
|
||||||
correlation by permuting the $(x_i, y_i)$ pairs, i.e. we rearrange the
|
correlation by permuting the $(x_i, y_i)$ pairs, i.e. we rearrange the
|
||||||
$x_i$ and $y_i$ values in a random fashion. Generating many sets of
|
$x_i$ and $y_i$ values in a random fashion. Generating many sets of
|
||||||
random pairs and computing the resulting correlation coefficients,
|
random pairs and computing the resulting correlation coefficients
|
||||||
yields a distribution of correlation coefficients that result
|
yields a distribution of correlation coefficients that result
|
||||||
randomnly from uncorrelated data. By comparing the actually measured
|
randomly from uncorrelated data. By comparing the actually measured
|
||||||
correlation coefficient with this distribution we can directly assess
|
correlation coefficient with this distribution we can directly assess
|
||||||
the significance of the correlation
|
the significance of the correlation
|
||||||
(figure\,\ref{permutecorrelationfig}).
|
(figure\,\ref{permutecorrelationfig}).
|
||||||
@ -183,10 +185,10 @@ Estimate the statistical significance of a correlation coefficient.
|
|||||||
and calculate the respective $y$-values according to $y_i =0.2 \cdot x_i + u_i$
|
and calculate the respective $y$-values according to $y_i =0.2 \cdot x_i + u_i$
|
||||||
where $u_i$ is a random number drawn from a normal distribution.
|
where $u_i$ is a random number drawn from a normal distribution.
|
||||||
\item Calculate the correlation coefficient.
|
\item Calculate the correlation coefficient.
|
||||||
\item Generate the distribution according to the null hypothesis by
|
\item Generate the distribution of the null hypothesis by generating
|
||||||
generating uncorrelated pairs. For this permute $x$- and $y$-values
|
uncorrelated pairs. For this permute $x$- and $y$-values
|
||||||
\matlabfun{randperm()} 1000 times and calculate for each
|
\matlabfun{randperm()} 1000 times and calculate for each permutation
|
||||||
permutation the correlation coefficient.
|
the correlation coefficient.
|
||||||
\item Read out the 95\,\% percentile from the resulting distribution
|
\item Read out the 95\,\% percentile from the resulting distribution
|
||||||
of the null hypothesis and compare it with the correlation
|
of the null hypothesis and compare it with the correlation
|
||||||
coefficient computed from the original data.
|
coefficient computed from the original data.
|
||||||
|
@ -1,7 +1,7 @@
|
|||||||
%!PS-Adobe-2.0 EPSF-2.0
|
%!PS-Adobe-2.0 EPSF-2.0
|
||||||
%%Title: pointprocessscetchA.tex
|
%%Title: pointprocessscetchA.tex
|
||||||
%%Creator: gnuplot 4.6 patchlevel 4
|
%%Creator: gnuplot 4.6 patchlevel 4
|
||||||
%%CreationDate: Mon Dec 2 13:03:15 2019
|
%%CreationDate: Tue Dec 3 08:08:50 2019
|
||||||
%%DocumentFonts:
|
%%DocumentFonts:
|
||||||
%%BoundingBox: 50 50 373 135
|
%%BoundingBox: 50 50 373 135
|
||||||
%%EndComments
|
%%EndComments
|
||||||
@ -430,10 +430,10 @@ SDict begin [
|
|||||||
/Title (pointprocessscetchA.tex)
|
/Title (pointprocessscetchA.tex)
|
||||||
/Subject (gnuplot plot)
|
/Subject (gnuplot plot)
|
||||||
/Creator (gnuplot 4.6 patchlevel 4)
|
/Creator (gnuplot 4.6 patchlevel 4)
|
||||||
/Author (benda)
|
/Author (jan)
|
||||||
% /Producer (gnuplot)
|
% /Producer (gnuplot)
|
||||||
% /Keywords ()
|
% /Keywords ()
|
||||||
/CreationDate (Mon Dec 2 13:03:15 2019)
|
/CreationDate (Tue Dec 3 08:08:50 2019)
|
||||||
/DOCINFO pdfmark
|
/DOCINFO pdfmark
|
||||||
end
|
end
|
||||||
} ifelse
|
} ifelse
|
||||||
|
Binary file not shown.
@ -1,7 +1,7 @@
|
|||||||
%!PS-Adobe-2.0 EPSF-2.0
|
%!PS-Adobe-2.0 EPSF-2.0
|
||||||
%%Title: pointprocessscetchB.tex
|
%%Title: pointprocessscetchB.tex
|
||||||
%%Creator: gnuplot 4.6 patchlevel 4
|
%%Creator: gnuplot 4.6 patchlevel 4
|
||||||
%%CreationDate: Mon Dec 2 13:03:15 2019
|
%%CreationDate: Tue Dec 3 08:08:50 2019
|
||||||
%%DocumentFonts:
|
%%DocumentFonts:
|
||||||
%%BoundingBox: 50 50 373 237
|
%%BoundingBox: 50 50 373 237
|
||||||
%%EndComments
|
%%EndComments
|
||||||
@ -430,10 +430,10 @@ SDict begin [
|
|||||||
/Title (pointprocessscetchB.tex)
|
/Title (pointprocessscetchB.tex)
|
||||||
/Subject (gnuplot plot)
|
/Subject (gnuplot plot)
|
||||||
/Creator (gnuplot 4.6 patchlevel 4)
|
/Creator (gnuplot 4.6 patchlevel 4)
|
||||||
/Author (benda)
|
/Author (jan)
|
||||||
% /Producer (gnuplot)
|
% /Producer (gnuplot)
|
||||||
% /Keywords ()
|
% /Keywords ()
|
||||||
/CreationDate (Mon Dec 2 13:03:15 2019)
|
/CreationDate (Tue Dec 3 08:08:50 2019)
|
||||||
/DOCINFO pdfmark
|
/DOCINFO pdfmark
|
||||||
end
|
end
|
||||||
} ifelse
|
} ifelse
|
||||||
|
Binary file not shown.
Reference in New Issue
Block a user