From cc0d00a621f2132f46572c855fd1d3fc4d4cbdfb Mon Sep 17 00:00:00 2001 From: Fabian Sinz Date: Sat, 1 Nov 2014 13:54:11 +0100 Subject: [PATCH] Fabian projects done --- projects/project_numbers/Makefile | 10 +++++ projects/project_numbers/Neuron22.mat | Bin 0 -> 10440 bytes projects/project_numbers/numbers.tex | 60 +++++++++++++++++++++++++ projects/project_spectra/spectra.tex | 21 ++++++++- statistics/lecture_statistics02.tex | 4 +- statistics/matlab/invg_loglikelihood.m | 3 +- statistics/matlab/lserr.m | 2 +- 7 files changed, 95 insertions(+), 5 deletions(-) create mode 100644 projects/project_numbers/Makefile create mode 100644 projects/project_numbers/Neuron22.mat create mode 100755 projects/project_numbers/numbers.tex diff --git a/projects/project_numbers/Makefile b/projects/project_numbers/Makefile new file mode 100644 index 0000000..dad25ce --- /dev/null +++ b/projects/project_numbers/Makefile @@ -0,0 +1,10 @@ +latex: + pdflatex *.tex > /dev/null + pdflatex *.tex > /dev/null + +clean: + rm -rf *.log *.aux *.zip *.out auto + rm -f `basename *.tex .tex`.pdf + +zip: latex + zip `basename *.tex .tex`.zip *.pdf *.dat *.mat diff --git a/projects/project_numbers/Neuron22.mat b/projects/project_numbers/Neuron22.mat new file mode 100644 index 0000000000000000000000000000000000000000..a4f0bda1cfe4f9b3f93e729f167b3839d89bf4c4 GIT binary patch literal 10440 zcmb7qWmwc-(Du@`q%=r3NK3~8ONW4TcS?t(EZyDR9nuYw(nw3E(yf5xz9|3adY`Wk zpY{XSZ_b&S`<{Ddj-r^Ff|xkPTUK@oMKQHE7S0nwwEL*b7j+H+H3XZ|+FJ$xgw+C&11x@RsNKH#;B2|M?F9BddrB002M?0Dwo< zand)`K6c>O4(@pU-A~*-n7-dQD=x)3gka^OuvGYj`fWU=^Tj@Jv$&#-`$9-;OMAk~zGS4?TI zVfVUf2Bt_3*g0|t5i0DlEOl9#^^U75ly+|(VA~HPM(Q5)uxU2+lG-19!W z0t!8z6T^T|0O3Km&{AI*tuSmI%SjsUv6RU8W^afej^MoA;UCTKI$N|RmE%XOql9{2 z(+@H{CpWdxw^;I}D(uqAHf1z^#fRky*{#tdtgt#X-2x&%C0*d0Ptwft6li)()_}epk(v$N&LS5b@qP?Zo4`Zh`dE?EG z?k^vnAHx7(0l_Ly(9&ue_b}<@bnk0%Y4zLEPpk6Sw=jzXi-5ed-lF%UIT3Hy#5h6X zLVEB`>ltn?Fp9ZhSLWITqS)-25a~Xd)5u}xNs=rZ;jNrR??<+HyYK&*IgAem}NgbmmwJ6y5h>vv$XU0f3@lUQ!_(yN3c9zNZLU@;(rQDsBz- zw@(ZbhKBB$XGght)M zufdAY{pZ$RbO;C;9`qSn@_0Bz_||_g9TkGW^T|}5z_I+JTW1USfwCVy#>Ouo7K~4V zW_iKuRO$bRm8is?daX~de&T|H`2sc{c3pD^ha{C}d{y@Bzwi2^{7d9DKWj~8WbjY> zfXl|$fS#NsvOKmF&=_^OUOk-VMbe*e-w;k|%vza6+S55g^qqlAm)jYc7X+L$X?CeL$d&i?!;e;*l&EY|NuSd|ua= zpQr|4IA7WO>fi^%Y+6yDm*m|@@)D|E6bJ|l4s`Ox8V&1*&uYe|0s@d#@f24%tdoyTovpq$ z5fV$G2PF=Lp&n%>lm>v>giCFu^jEdiESSPU19NNyE$CY6R@29o7K7X*(x+#8f=6%k z6GRUXUuZ%M_1Q;Yl`d#8f~GyVAYQi5FX@zJ*6hQVtJ~I3m}G=SY`Z9=PKwIvhU=Qr zR|P+Mn0Zi;5{ReQhMQLyTbl#EBq8-96}1L1*3u0e^hhS~ZK11%JjIlQWEVv}uO?ug z?fhlAzp2QMEHVA#DRpwLTvdW5lV0~B6=ziiE^{&iW~djZ3rgNLD<>b<*1pLfHmoxhAnObg<(Q#$W41P7YE zc76%`%nJH5H%X{0`dN3!fs})#lUq-P(dOJ60Ou_lNM#(>Ct6SJq6VZF1k&SCQ!NgP zB8Z_Ym51lY`k}$PSsmr3-h64lVgeUjVw}xeC0gXVT1M8F&mBH~oo7P+wiHE|MZ~wQ zW*A3!L>C0EdDR6*1#4i3V^ftzypX|?*fZ*o!76RgVqr+J3L4(|7j?y`UjLd8VKPbt z?AB#m@>@5ktCT9;{%L754#VGK)th7Ys>qZI^$EY~R7zO1l;feTsuQOreU#O9WdS2U zgpn&r^JuEBbn{`}xqE8o^DTEp{!m(0+PE)|sT(eXd&x*a90&yv0rYG(yRPn>7fw9t z*d6!502b{5B-_gAinHFhg#=L zD2#j%XodumnzQr!#9K@M##{h6Ka)s4=O%_pR~Alz<%H?^J+X|%VC>0`wQG41P1amI zWiMVvJS=_Sn}zov8^S8b>)}DfaBR?@qBxt|fG>>1-pptiX0`4hDhx){YVa!?(ml}% zwVT)Qv{`&oWRXq>-r)=#5rklcW}$z9pVOWo?qf$zyz#Ss_iOVGjfY{_Dzr}Ejc>L9eGq$tg;IuSTk2$CN>QH%y5 z^}L@jz{662Ils!=Fay;lqJbsLj9u)CkOljSs9Ibme^+zkK5j;<_fbB=#9S1eZqj8Z zk^l`9*y`kk)``?Re*;c-wx>+)@!&4}&Zb)@PnK^<_v354)YB(d$X1<7>i-ele(g|F9V-I?i9Gf;Q61gX`_7 z5ixJWX*TN|>XuiK;bI69E$r}G5sq}0vhPBUE^xcw2N{vpGDrLz8p+I$2aUVnGY^Q> zO4425dD@^cS2PC2Z*wC9uBx8yVL!{|^!1w0b_>GFii282MLtg?B~-Wj++QZgoY04~ z@^JfZa1ppPn_g$ZRb^QD{<1s3ct7S3w<$8U6LvSdMND-d#&b6s#j#QFI$CTIqw29! z=L=EdQnzVG6lroS`|HeBy!Mh7^?%`Q)c2DXtdwUstSC4EGr?V*GGB1NVEU>{YQCmwF@Q_~No zFb5!!{lI>Kj<_GI@ZycS-!Df(;g8%yI!J-w{UjrinecZ6A2u7`HS_&(gL(|dD2eOq zMt#PxBva?~5MZdC8fGDehyC;JA}+f!=h8j2xNoD{mx%lYzG*8s{mW+c>L5h8a>)p^Zu z&&V(K+98Zp=q)+W4`^mF+FPwDk-Gt`)z>YpVhIqqyQ!ajd%l&2qpIXl6_+ko$60 zYApIB$nsj)FqLvbGGu)+r)rtBF@bS_R7zzbWB+=yuYVUoYTT?9cYc`Y;6~m19ez-# zGtz?sz)L)o#6%?4IdLj~^1Vh)F6J+^fn<&vYbtRTVct2Fl!xiQB>OC?SD`L2>YqqG z-X{Ehr%IdPR=#iKg8S{x;vwXiW04@+b*E7BZNh`7bzMTO-!Jc3s%@zjPaBFt$2HBs6lf0c96Q>GGJ86*;7Y-kbUA}PdK zL}4*!1=v(m=4=?L;Me9;r!2xAZ(dr}!8Um1B)NOa-<9()rfiHyPh5vqoms^|tdyeCUtf^~#b>>g! z^{^sW1hqwcO?YP5_{a<^KO7bFz&XZI4Un_}$$oqUgNqemnCM%E#N{`hK6AQ>my> zY#LxXu9p#mX7N`FOW+f8VagLxMw^g8&x$G@$=(lWEe4;SNBlY(VJgh7BwMe(k)Ol- zpzKUR8n(96M8t=$U6(7x^6$z*%~%9qE|cDi^Gv}KsZi)amn{KYFOJ2%k^nw3QDfmJ z((w*0ndTU$EfPWMB6bH9g90`dK+guReSZ%kPaA!qX>ISUE40 zH!*=dGNv*aS~h${b8JVqV5mI?W<5JiA!qd)PNo(mi#mIzG-7GpY)rwMo;8H?^jmEK zb@6h-SD+JwOpKkERv@kJpKKk2LR~dq;VG+N{6vq2>x1Ft{sf9^fsi$^Yn6YmV?QXA z&v=7BEQ?-FBc+v0rqESmMiWSP{ZIg>&1}4RL+Czc986EKDIoJ%A*^WHCxR3Fipa^* zEc-fx4_!Pe(rXKH%=ToYC zB`jX;Yh3{c<0y{CUrsw>fTXdePfAJo)!-0xZ87IJd4({VJk;?7rmDFP{y@2;{_Ge> zX3?lg$stP-He2!ySGL>j?+Swx04jRvo)5W%KUz@V)`F?ix1(n|C1dHlYl+K`n8L<- zd7TlszElTuOtc*a$7EnUKp`rgNC&Lb< zy0os9P;Ne{FjRiN1o2zVCaY&F;Qktwb<4lv*xeh#C9S4RJ#m6wjcSE<6)+vL_RRv% zdOh98PRT$@G{RGPXS?;|T6tj>-hK;B&#^aP*Q9zs^yAJ=R6y${CZTK;&ZzR-I1%+_ zMD*oLN0G+=j8-80G*nbk96(4ezSla3LL*byT(-8|6I1{v^a{AGMSrsJ{R8P|5}=Xs z#aNQ8AbXptwO-469x_GHw}|lSlKovvSgv)UGBaFZ^k(tm z`NvN~M)=H_N~6OK+U^?MNflTNjm+dR_u5>E2V55Vn0_r%h zojrww>6OB3lPp_;TEViUh)|$Kri?9*`k13^fiHlDbo7g`m5_oZ6ea(=Wd5wXnopsm zaUs$~G13KRSm`1L6S1e6Ja;I$1VQz}E9xDKqYLdpBrqZz?jVDJ4_4cTU^`O15|!8# z3d`oXsKNp9LKVj>?nb!o_Kg>q>JrH)MA-bCeN4%K8Tll3lw+p&^i78WQB;)3oa6}9 zg{YAC_$5;k#-1BFWXYXpjpl})K{18LSDAs`iOJ?YY;0*dRz&UV+dMe?0l{I|Z>SUCc zFaaj;=xhMmWGW`;nRn}}ha^3hFZCSWOQb2s5qfpB7Dl!G+|?82c@rq+@%A*BZL8<4 z-ccyid-!V$^Nc3lIL`m&$BU!?LT;-$|MEoHqoZPqs3iRBUSN*Z_D8}-fF&HuMDWU^ zlk2rX9I?~9aykY_Wp9vGngJ%8gFbm>pjbCT_)VOJT2RyVXbj=hhmose<|!eJaIB71 zz0*KrK)Y&ec&1le)8IGN$YInWPM#;!SGBYKKaIABDZ{-DdH8gYaElXy zN(M!Lxq(WVGyJwTsjd@-Zwq%mK#^_x#mDS@r$uPRnzVEw8Fs4yTU;Ut24pr^m&Sa!b#cLT!jEVnwHNoeB_@A0d`~OY0MSvsVr@x3g>j+QVSO{&GGgeGi(kU3;VdHm5fR<>MG zgxTXTbOM3Ji(8pr$zlkg66J#Zy-m7;#$c3ygnj_dsmQmeJ=?N)J3C;xDr!`aWabx= z(Kh3qg%ZD_2ol7Cgw|MnF87W|nzv01`lPHH3l*hT*bza0NZSM!1!vdRQC{lb3%MOU zlbezvjVmMLZn% zh@FVyi6=<*I^+|^K-7;tt|`VAc2F*n=>L6sye(kkQj4nLj!<_pa8&x*&PvE8o;@nN|7&F;SL*u;oK~ou7M|M+>{9;Cm*Cf)`Qf`%=0b)f zz8OX|SyX?3Y$onGeyv40s9dec>{G*eiXsn!8>eV_{hYbhCeF$r>2R(yW z^811{{XIu=bwKRc619Pm7Vc8nf(2w@5D0ZRj&Js*aw0P#ou#8>&dZC^7Fuuf-uOoI z{td?FwYo{K)g7`yi)8_EU#aGU1)>^8jOw-(lZX=jW0PJq+CQ%*uAu&%!2Q)j`;nVj zg;l9lW1cukJl5O!;;y-SGkDB_H>^=}bJ9GQcUUH#bsco0b{hA#o(@_pRfbhvGy@Wl z{h??BczIte14?k5mk+-DEDuj24Mk|Z*D+&nPk#7`%t9CYsH6Nxmij)eRss=k>yLa(TS{Se-N*j&RQ`tVt`*)A{}0Y1hZ*^S@Rv5D6I z8lmCqxyAQI!O8eC*<}8dNUBBjd%lmoT_NLW)>C1jRQ#&KB=~J^fqxd_6bTDH%GwCp z8f?Sf=5^nEf*CmL!Y!>sp?qT3jhrSFx>kt{x+vqgb!tuDy>h<&^->4^Hw#3SYcb8O zwY#v}DHv&O557SkW2O}c&^Tb>_fd9}2Sj5qXL#coJ=lppbuREF^9IAJyVYnaw%DrA zRY_POQ^F&$kP9@@H?E@R^3B4lv&bd(R|vhya}m=PMTi@DUrcltZFLfNa=6*6wBWK5 z{l!OC!|q)F#$;kAfQ2LbH6}>8Ym%K$DS!)A=}5;U{rH7TQ(n0AZ)@VkJ^jJd9QU}x zV|vEjN~pFG5x4)l9Z0+;GC)dkzL0Mdcb zG>cgC`=p@chz;?k>U@iUFD3R%;v3VNYS@DcY2m(npsgojw%Oe9>JzzgTkG;8O8eZ<_ z1&9<;lPqBPk~Dpg06bd%*}Re3nn!8#N~KBai(}y6r!Mh35-h38^a+Z)Hxey`dL7kv z=H^$JC#(}whQmNu(vp?3O>bXq204Y{3loZ)Ri`X3#IGnO3L+r-ExD=E;!f^&hySC) zU*LTK%{^_BjTVz6&B!i{U}dI}3Y?OX$R2?_&KAJvDH=UF`VBam-`c`mlDxwX$2}Tz z>Ch`+?sk=e6%S?#um$?UeD%kHlM<<>+z8s-+Lv#tiHubo>#hS@mUHA$nA+f!A148d zeK_5sCNpNIcO`IIpL%m85Tb$2*$MM#S)7Wgl_RW0PW(5%hwF!mt~IF_ClyJh zZITGMQe4LaRiAsiw4WlSD1R`Q!(7(y>Q*ZY756Zubj4i7G_gYU5IN(S&(gsw8yUHN zw7V$HzkU+DVmrR}ePSMz{*fnzAlZ~RZQ!U*B0Dxjt&4ULfo^9QhFo$sdbR(XGd9#^ zFib6Lf^&}3MdQWY!g`%EJC=<1r@ck+}bo9FyD@p^aQIl6mw-_go6cNZpVM5%V7X7%j-GOMo-y&3*Dwv7_Cu!mOWGk*n z2$8r`GwS+qh=)h3%%p9N4^TbKExm*9{ef5^nJr_yhtz@hudK|8;XLn#B~(uRtO?jH z)CgoBTD~?iBA$mY)!m(9(RL?CQp%7IYO6Pw8=%d%+td68P>_=284|9LHK9md&l4XbFlF`w743Ps$Bl+Hxw~Y z>^Gf?)S)8*dqKVtZkrp%s<87PTj%L{`w5D7MR#Sio2K5^yGSxoO<*hl>A6=H2>$}- zkuKPo^$%^>Oy{-cS7^H;1A*wNV?sI2OWrI9;{VH=C1{D=hk4`ypWQVKG>SyW7-`;} zE4V479XlL?_umlhDh{nlK5yc1)AZs2-bJ;}x9TI$4vQ7a=~>+@zymYO=?xm5GFn)J zAgS1tK*B`j0nx}GY7f8Pk?|;>BK=b9rfwirdV$P*9eU66JA(Dj@b>1Np9DqQWurPTLQD1582Bk4}=N#)L5XBWF zVO^6ee{~&=bM-$gKC9Kg5b%b|cW@yFqTqc9eQHt0ms@5erCkhQiyz*ub7BIJ*L6^9 zuwo67MJgUIeDjl;H05hT;rQavOUh*`fDQ{2BB@WZbi}0Is#Z6}wFg;h%uez-;qx_# zf$jKGoB_i67$(JU}(o6KCS#V1a z%+qvCsM;>Uq*k8!kNTdI?ypq%yUts4FR8?kvH5cbn~_(gH0`C6$cHypU(J*R_ke16 ziM9-T&SSzAM6)+BzwUDb?{u7BZK=HUA^f&OINOy>l2SzCTsDAyS}!^`(TN*iH7HWO zyH>`s_A-8Xe)sUti+51blhJIA*&t51n<_K0ED;>3LYY`}Kd}9o`-%SRU3ngcsD&~5 z1K`EEdKdlI~q@cRX60=2mla%;D(oZ zLrJGe&U@v=>@rmI`uLRAIJY-FO|F8rWo^E+PB)3)v6bwkF#Y^SK{LA@9F_+{ zesVAa4RFNfYlj-V+076b`0A#UiqUohU(EGM@wWiYcV>Q9>|;dH<#X+9SjI}@ogR1* z3?+^YNgbdfNk;Bd+a+0?NW1*0t*!an(}gxbqWBh`#efBDvDXWG&iw1H5dH-;qfBun z?$Y10lCB+M%?9A>EkGKE$S5uyvENzW!F8@A$(=Nh&;1(2ETBv}hnpjr5K&UrILwiI z(@?G%*k$Ma*2}8H!)eu44KDl=MQ=N`>`bcF8hTc3+@5);SViLxRgq`ECz=M0BF09cS~LgOvv*; zyUSf(W0{nVY%I{GBddKvxTEE{657{Ba25{fI*do>MXTyZ2s1W7MtPkkRC?r^uth9u;-0?qS~*JV2=>IbzR(wUe*7c&s3G1 zGkfGTc9KFVu#=@M{Z_uWkENX;&)bKpX_T(7DSlTC_)^ak{qe^FL7y>e znkqP;0`;-|RyIO!YCPFdX^6`5+x0()m=YosLfDOp;+It*0J9L1_~j5#6%d9#0fo@1 aw%nFeUx8|^Z;Pb53{WWwvrRy(_5T3Uf_xbO literal 0 HcmV?d00001 diff --git a/projects/project_numbers/numbers.tex b/projects/project_numbers/numbers.tex new file mode 100755 index 0000000..51312ef --- /dev/null +++ b/projects/project_numbers/numbers.tex @@ -0,0 +1,60 @@ +\documentclass[addpoints,10pt]{exam} +\usepackage{url} +\usepackage{color} +\usepackage{hyperref} + +\pagestyle{headandfoot} +\runningheadrule +\firstpageheadrule +\firstpageheader{Scientific Computing}{Project Assignment}{11/05/2014 + -- 11/06/2014} +%\runningheader{Homework 01}{Page \thepage\ of \numpages}{23. October 2014} +\firstpagefooter{}{}{} +\runningfooter{}{}{} +\pointsinmargin +\bracketedpoints + +%\printanswers +%\shadedsolutions + + +\begin{document} +%%%%%%%%%%%%%%%%%%%%% Submission instructions %%%%%%%%%%%%%%%%%%%%%%%%% +\sffamily +% \begin{flushright} +% \gradetable[h][questions] +% \end{flushright} + +\begin{center} + \input{../disclaimer.tex} +\end{center} + +%%%%%%%%%%%%%% Questions %%%%%%%%%%%%%%%%%%%%%%%%% + +\begin{questions} + \question The accompanying data {\tt Neuron22.mat} stores a single + data matrix {\tt data\_unsorted} containing spike from a neuron in + macaque prefrontal cortex. The task of the monkey was to + discriminate point sets with 1 to 4 points. The first column + contains the number of points shown plus one. The remaining columns + contain the spike response across 1300ms. During the first 500ms the + monkey was fixating a target. The next 800ms the stimulus was + shown. This was followed by 1000ms delay time before the monkey was + allowed to respond. + + \begin{parts} + \part Plot the data in an appropriate way. + \part Sort the trials according to the stimulus presented and + compute the firing rate (in Hz) in the time interval + 500-1300ms. Plot the firing rate in an appropriate way. + \part Use an appropriate test to determine whether the firing rate + in that interval is significantly different for 1 vs. 4 points + shown. + \end{parts} +\end{questions} + + + + + +\end{document} diff --git a/projects/project_spectra/spectra.tex b/projects/project_spectra/spectra.tex index 61f2e1a..1526b9a 100755 --- a/projects/project_spectra/spectra.tex +++ b/projects/project_spectra/spectra.tex @@ -32,7 +32,26 @@ %%%%%%%%%%%%%% Questions %%%%%%%%%%%%%%%%%%%%%%%%% \begin{questions} - \question What was the questions for 42? + \question The accompanying file contains ten stimulus and response + sequences of a P-Unit of a weakly electric fish {\em Apteronotus + leptorhynchus}. Another matrix contains the corresponding {\em + electric organ discharge (EOD)} of the fish. The sampling rate is + 100kHz. + \begin{parts} + \part Split the data in non-overlapping 200ms windows and plot + them in an appropriate way. + \part Compute the autocorrelation of the spike response as well as + the cross-correlation between stimulus and spike response. + \part Determine the fundamental stimulus frequency and the EOD + frequency using a Fourier transform. + \part Convolve the spike responses (windows) with a Gaussian of + appropriate size and compute the average Fourier amplitude + spectrum of the spike response. Plot the result in an appropriate + way. + \part Determine whether you can find peas in the amplitude + spectrum at the fundamental frequency of the EOD and/or the + stimulus and/or their difference. + \end{parts} \end{questions} diff --git a/statistics/lecture_statistics02.tex b/statistics/lecture_statistics02.tex index 42586d1..dfa26d9 100644 --- a/statistics/lecture_statistics02.tex +++ b/statistics/lecture_statistics02.tex @@ -369,12 +369,12 @@ incubation. The following plot depicts the mean thymus gland weights in (mg): the the first $80$ datapoints, and repeat the following steps $m=500$ times: \begin{enumerate} - \item draw $50$ data points from $x$ with replacement + \item draw $80$ data points from $x$ with replacement \item compute their mean and store it \end{enumerate} Look at the standard deviation of the computed means. \item Compare the result to the standard deviation of the original - $50$ data points and the standard error. + $80$ data points and the standard error. \end{itemize} \end{task} \end{frame} diff --git a/statistics/matlab/invg_loglikelihood.m b/statistics/matlab/invg_loglikelihood.m index 5460ea4..75e3325 100644 --- a/statistics/matlab/invg_loglikelihood.m +++ b/statistics/matlab/invg_loglikelihood.m @@ -1,4 +1,5 @@ function ll = invg_loglikelihood(x, p) mu = p(1); lambda = p(2); - ll = mean(.5*(log(lambda) - log(2*pi) - 3*log(x)) - lambda*(x-mu).^2./(2*mu^2*x)); \ No newline at end of file + ll = .5*(log(lambda) - log(2*pi) - 3*log(x)) - ... + lambda*(x-mu).^2./(2*mu^2*x); \ No newline at end of file diff --git a/statistics/matlab/lserr.m b/statistics/matlab/lserr.m index f54221f..6ff2bc3 100644 --- a/statistics/matlab/lserr.m +++ b/statistics/matlab/lserr.m @@ -1,4 +1,4 @@ -function [err, grad] = lserr(param, x, y) +function [err, grad] = lserr(x, y, param) err = mean( (param(1)*x + param(2) - y).^2 ); if nargout == 2