added PCA solution

This commit is contained in:
sonnenberg 2020-01-20 16:30:00 +01:00
parent 1afe582006
commit c40932c396
3 changed files with 99 additions and 0 deletions

View File

@ -0,0 +1,31 @@
function Y = ConeResponse(X)
wl_r = 700;
wl_g = 510;
wl_b = 440;
wl = [wl_r; wl_g; wl_b];
mu_s = 445;
mu_m = 545;
mu_l = 575;
sig_s = 20;
sig_m = 40;
sig_l = 45;
s = gauss(wl,mu_s,sig_s)/gauss(mu_s,mu_s,sig_s);
m = gauss(wl,mu_m,sig_m)/gauss(mu_m,mu_m,sig_m);
l = gauss(wl,mu_l,sig_l)/gauss(mu_l,mu_l,sig_l);
S = X'*s;
M = X'*m;
L = X'*l;
Y = [L, M, S]';
%
% close all
% hold on
% plot(lam,s,'b')
% plot(lam,m,'g')
% plot(lam,l,'r')
% hold off

View File

@ -0,0 +1,3 @@
function Y = gauss(X,mu,sigma)
Y = exp(-0.5*((X-mu)/sigma).^2)./sqrt(2*pi*sigma^2);
% Y = Y/exp(-0.5*(mu/sigma).^2)./sqrt(2*pi*sigma^2);

View File

@ -0,0 +1,65 @@
clear all
close all
pic = imread('D:\Dokumente\MATLAB\Matlabkurs2018\pca\natimg.jpg');
pic = pic(end:-1:1,:,:);
red = double(pic(:,:,1));
green = double(pic(:,:,2));
blue = double(pic(:,:,3));
% mat = [red(:),green(:),blue(:)];
mat = reshape(double(pic),size(pic,1)*size(pic,2),size(pic,3))';
cones = ConeResponse(mat);
% [coeff, score, latent] = pca(mat,'Centered',false);
% [coeff, score, latent] = pca(cones,'Centered',false);
% n = 10000;
% cones = cones(:,randi([1,size(cones,2)],1,n));
cones = mat;
cv = cov(cones');
[ev, ew] = eig(cv);
[ew, ew_idx] = sort(diag(ew), 'descend');
coeff = cones'*ev(:,ew_idx);
% coeff = [coeff'; zeros(size(pic,1)*size(pic,2)-size(coeff,2),3)];
c1 = reshape(coeff(:,1),size(pic,1),size(pic,2));
c2 = reshape(coeff(:,2),size(pic,1),size(pic,2));
c3 = reshape(coeff(:,3),size(pic,1),size(pic,2));
% score
figure
subplot(221)
contourf(red)
axis('square')
subplot(222)
contourf(green)
axis('square')
subplot(223)
contourf(blue)
axis('square')
colormap('gray')
subplot(224)
imshow('D:\Dokumente\MATLAB\Matlabkurs2018\pca\natimg.jpg')
axis('square')
figure
subplot(221)
contourf(c1)
axis('square')
subplot(222)
contourf(c2)
axis('square')
colormap('gray')
subplot(223)
contourf(c3)
axis('square')
colormap('gray')
% score