Merge branch 'master' of whale.am28.uni-tuebingen.de:scientificComputing
This commit is contained in:
commit
c3c6a37348
@ -1,4 +1,4 @@
|
||||
all: projects evalutation
|
||||
all: projects evaluation
|
||||
|
||||
evaluation: evaluation.pdf
|
||||
evaluation.pdf: evaluation.tex
|
||||
|
@ -15,7 +15,7 @@
|
||||
\begin{document}
|
||||
|
||||
\sffamily
|
||||
\section*{Scientific computing WS16/17}
|
||||
\section*{Scientific computing WS17/18}
|
||||
|
||||
\begin{tabular}{|p{0.15\textwidth}|p{0.07\textwidth}|p{0.07\textwidth}|p{0.07\textwidth}|p{0.07\textwidth}|p{0.07\textwidth}|p{0.07\textwidth}|p{0.07\textwidth}|p{0.07\textwidth}|p{0.07\textwidth}|}
|
||||
\hline
|
||||
|
@ -58,7 +58,7 @@ time = [0.0:dt:tmax]; % t_i
|
||||
\part Response of the passive membrane to a step input.
|
||||
|
||||
Set $V_0=0$. Construct a vector for the input $E(t)$ such that
|
||||
$E(t)=0$ for $t\le 20$\,ms and $t\ge 70$\,ms and $E(t)=10$\,mV for
|
||||
$E(t)=0$ for $t\le 20$\,ms or $t\ge 70$\,ms, and $E(t)=10$\,mV for
|
||||
$20$\,ms $<t<70$\,ms. Plot $E(t)$ and the resulting $V(t)$ for
|
||||
$t_{max}=120$\,ms.
|
||||
|
||||
@ -92,7 +92,7 @@ time = [0.0:dt:tmax]; % t_i
|
||||
spike'' only means that we note down the time of the threshold
|
||||
crossing as a time where an action potential occurred. The
|
||||
waveform of the action potential is not modeled. Here we use a
|
||||
voltage threshold of one.
|
||||
voltage threshold of 1\,mV.
|
||||
|
||||
Write a function that implements this leaky integrate-and-fire
|
||||
neuron by expanding the function for the passive neuron
|
||||
@ -114,7 +114,6 @@ time = [0.0:dt:tmax]; % t_i
|
||||
\label{firingrate}
|
||||
r = \frac{n-1}{t_n - t_1}
|
||||
\end{equation}
|
||||
|
||||
What do you observe? Does the firing rate encode the frequency of
|
||||
the stimulus?
|
||||
\end{parts}
|
||||
|
@ -1,8 +1,8 @@
|
||||
function spikes = lifspikes(trials, input, tmax, D)
|
||||
function spikes = lifspikes(trials, current, tmax, D)
|
||||
% Generate spike times of a leaky integrate-and-fire neuron
|
||||
% trials: the number of trials to be generated
|
||||
% input: the stimulus either as a single value or as a vector
|
||||
% tmax: duration of a trial
|
||||
% current: the stimulus either as a single value or as a vector
|
||||
% tmax: duration of a trial if input is a single number
|
||||
% D: the strength of additive white noise
|
||||
|
||||
tau = 0.01;
|
||||
@ -13,7 +13,11 @@ function spikes = lifspikes(trials, input, tmax, D)
|
||||
vthresh = 10.0;
|
||||
dt = 1e-4;
|
||||
|
||||
n = ceil(tmax/dt);
|
||||
n = length( current );
|
||||
if n <= 1
|
||||
n = ceil(tmax/dt);
|
||||
current = zeros( n, 1 ) + current;
|
||||
end
|
||||
spikes = cell(trials, 1);
|
||||
for k=1:trials
|
||||
times = [];
|
||||
@ -21,7 +25,7 @@ function spikes = lifspikes(trials, input, tmax, D)
|
||||
v = vreset + (vthresh-vreset)*rand();
|
||||
noise = sqrt(2.0*D)*randn(n, 1)/sqrt(dt);
|
||||
for i=1:n
|
||||
v = v + (- v + noise(i) + input)*dt/tau;
|
||||
v = v + (- v + noise(i) + current(i))*dt/tau;
|
||||
if v >= vthresh
|
||||
v = vreset;
|
||||
times(j) = i*dt;
|
||||
|
@ -9,9 +9,6 @@
|
||||
|
||||
\input{../instructions.tex}
|
||||
|
||||
|
||||
%%%%%%%%%%%%%% Questions %%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
%\section{REPLACE BY SUBTHRESHOLD RESONANCE PROJECT!}
|
||||
\begin{questions}
|
||||
\question You are recording the activity of a neuron in response to
|
||||
constant stimuli of intensity $I$ (think of that, for example,
|
||||
@ -19,24 +16,32 @@
|
||||
|
||||
Measure the tuning curve (also called the intensity-response curve) of the
|
||||
neuron. That is, what is the mean firing rate of the neuron's response
|
||||
as a function of the input $I$?
|
||||
as a function of the constant input current $I$?
|
||||
|
||||
How does the intensity-response curve of a neuron depend on the
|
||||
level of the intrinsic noise of the neuron?
|
||||
|
||||
How can intrinsic noise be usefull for encoding stimuli?
|
||||
|
||||
The neuron is implemented in the file \texttt{lifspikes.m}. Call it
|
||||
with the following parameters:
|
||||
with the following parameters:\\[-7ex]
|
||||
\begin{lstlisting}
|
||||
trials = 10;
|
||||
tmax = 50.0;
|
||||
input = 10.0; % the input I
|
||||
Dnoise = 1.0; % noise strength
|
||||
spikes = lifspikes(trials, input, tmax, Dnoise);
|
||||
current = 10.0; % the constant input current I
|
||||
Dnoise = 1.0; % noise strength
|
||||
spikes = lifspikes(trials, current, tmax, Dnoise);
|
||||
\end{lstlisting}
|
||||
The returned \texttt{spikes} is a cell array with \texttt{trials}
|
||||
elements, each being a vector of spike times (in seconds) computed
|
||||
for a duration of \texttt{tmax} seconds. The input is set via the
|
||||
\texttt{input} variable, the noise strength via \texttt{Dnoise}.
|
||||
for a duration of \texttt{tmax} seconds. The input current is set
|
||||
via the \texttt{current} variable, the strength of the intrinsic
|
||||
noise via \texttt{Dnoise}. If \texttt{current} is a single number,
|
||||
then an input current of that intensity is simulated for
|
||||
\texttt{tmax} seconds. Alternatively, \texttt{current} can be a
|
||||
vector containing an input current that changes in time. In this
|
||||
case, \texttt{tmax} is ignored, and you have to provide a value
|
||||
for the input current for every 0.0001\,seconds.
|
||||
|
||||
Think of calling the \texttt{lifspikes()} function as a simple way
|
||||
of doing an electrophysiological experiment. You are presenting a
|
||||
@ -52,20 +57,17 @@ spikes = lifspikes(trials, input, tmax, Dnoise);
|
||||
and plot neuron's $f$-$I$ curve, i.e. the mean firing rate (number
|
||||
of spikes within the recording time \texttt{tmax} divided by
|
||||
\texttt{tmax} and averaged over trials) as a function of the input
|
||||
for inputs ranging from 0 to 20.
|
||||
current for inputs ranging from 0 to 20.
|
||||
|
||||
How are different stimulus intensities encoded by the firing rate
|
||||
of this neuron?
|
||||
|
||||
\part Compute the $f$-$I$ curves of neurons with various noise
|
||||
strengths \texttt{Dnoise}. Use $D_{noise} = 1e-3$, $1e-2$, and
|
||||
$1e-1$.
|
||||
strengths \texttt{Dnoise}. Use for example $D_{noise} = 1e-3$,
|
||||
$1e-2$, and $1e-1$.
|
||||
|
||||
How does the intrinsic noise influence the response curve?
|
||||
|
||||
How is the encoding of stimuli influenced by increasing intrinsic
|
||||
noise?
|
||||
|
||||
What are possible sources of this intrinsic noise?
|
||||
|
||||
\part Show spike raster plots and interspike interval histograms
|
||||
@ -74,14 +76,21 @@ spikes = lifspikes(trials, input, tmax, Dnoise);
|
||||
responses of the four different neurons to the same input, or by
|
||||
the same resulting mean firing rate.
|
||||
|
||||
\part How does the coefficient of variation $CV_{isi}$ (standard
|
||||
deviation divided by mean) of the interspike intervalls depend on
|
||||
the input and the noise level?
|
||||
\part Let's now use as an input to the neuron a 1\,s long sine
|
||||
wave $I(t) = I_0 + A \sin(2\pi f t)$ with offset current $I_0$,
|
||||
amplitude $A$, and frequency $f$. Set $I_0=5$, $A=4$, and
|
||||
$f=5$\,Hz.
|
||||
|
||||
Do you get a response of the noiseless ($D_{noise}=0$) neuron?
|
||||
|
||||
What happens if you increase the noise strength?
|
||||
|
||||
What happens at really large noise strengths?
|
||||
|
||||
Generate some example plots that illustrate your findings.
|
||||
|
||||
\part Based o your results, discuss how intrinsic noise might
|
||||
improve and how it might deteriote the encoding of different
|
||||
stimulus intensities.
|
||||
|
||||
Explain the encoding of the sine wave based on your findings
|
||||
regarding the $f$-$I$ curves.
|
||||
|
||||
\end{parts}
|
||||
|
||||
|
@ -1,8 +1,8 @@
|
||||
function spikes = lifspikes(trials, input, tmax, D)
|
||||
function spikes = lifspikes(trials, current, tmax, D)
|
||||
% Generate spike times of a leaky integrate-and-fire neuron
|
||||
% trials: the number of trials to be generated
|
||||
% input: the stimulus either as a single value or as a vector
|
||||
% tmax: duration of a trial
|
||||
% current: the stimulus either as a single value or as a vector
|
||||
% tmax: duration of a trial if input is a single number
|
||||
% D: the strength of additive white noise
|
||||
|
||||
tau = 0.01;
|
||||
@ -13,7 +13,11 @@ function spikes = lifspikes(trials, input, tmax, D)
|
||||
vthresh = 10.0;
|
||||
dt = 1e-4;
|
||||
|
||||
n = ceil(tmax/dt);
|
||||
n = length( current );
|
||||
if n <= 1
|
||||
n = ceil(tmax/dt);
|
||||
current = zeros( n, 1 ) + current;
|
||||
end
|
||||
spikes = cell(trials, 1);
|
||||
for k=1:trials
|
||||
times = [];
|
||||
@ -21,7 +25,7 @@ function spikes = lifspikes(trials, input, tmax, D)
|
||||
v = vreset + (vthresh-vreset)*rand();
|
||||
noise = sqrt(2.0*D)*randn(n, 1)/sqrt(dt);
|
||||
for i=1:n
|
||||
v = v + (- v + noise(i) + input)*dt/tau;
|
||||
v = v + (- v + noise(i) + current(i))*dt/tau;
|
||||
if v >= vthresh
|
||||
v = vreset;
|
||||
times(j) = i*dt;
|
||||
|
@ -7,20 +7,34 @@ figure()
|
||||
Ds = [0, 0.001, 0.01, 0.1];
|
||||
for j = 1:length(Ds)
|
||||
D = Ds(j);
|
||||
inputs = 0.0:0.5:20.0;
|
||||
rates = ficurve(trials, inputs, tmax, D);
|
||||
plot(inputs, rates);
|
||||
currents = 0.0:0.5:20.0;
|
||||
rates = ficurve(trials, currents, tmax, D);
|
||||
plot(currents, rates);
|
||||
hold on;
|
||||
end
|
||||
hold off;
|
||||
|
||||
%% spike raster and CVs
|
||||
input = 12.0;
|
||||
figure()
|
||||
current = 12.0;
|
||||
for j = 1:length(Ds)
|
||||
D = Ds(j);
|
||||
spikes = lifspikes(trials, input, tmax, D);
|
||||
spikes = lifspikes(trials, current, tmax, D);
|
||||
subplot(4, 2, 2*j-1);
|
||||
spikeraster(spikes, 0.0, 1.0);
|
||||
subplot(4, 2, 2*j);
|
||||
isih(spikes, [0:0.001:0.04]);
|
||||
end
|
||||
|
||||
%% subthreshold resonance:
|
||||
time = [0.0:0.0001:1.0];
|
||||
current = 5.0 + 4.0*sin(2.0*pi*5.0*time);
|
||||
D = 0.1;
|
||||
spikes = lifspikes(trials, current, tmax, D);
|
||||
subplot(2, 1, 1);
|
||||
spikeraster(spikes, 0.0, 1.0);
|
||||
subplot(2, 1, 2);
|
||||
plot(time, current);
|
||||
|
||||
|
||||
|
||||
|
@ -69,15 +69,15 @@ plt.show()
|
||||
|
||||
# tuning curves:
|
||||
nunits = 6
|
||||
unitphases = np.linspace(0.0, 1.0, nunits) + 0.05*np.random.randn(nunits)/float(nunits)
|
||||
unitphases = np.linspace(0.04, 0.96, nunits) + 0.05*np.random.randn(nunits)/float(nunits)
|
||||
unitgains = 15.0 + 5.0*(2.0*np.random.rand(nunits)-1.0)
|
||||
nangles = 12
|
||||
angles = 180.0*np.arange(nangles)/nangles
|
||||
for unit, (phase, gain) in enumerate(zip(unitphases, unitgains)):
|
||||
print '%.1f %.0f' % (gain, phase*180.0)
|
||||
print 'gain=%.1f phase=%.0f' % (gain, phase*180.0)
|
||||
allspikes = []
|
||||
for k, angle in enumerate(angles):
|
||||
spikes = lifadaptspikes(0.5*(1.0-np.cos(2.0*np.pi*(angle/180.0-phase))), gain)
|
||||
spikes = lifadaptspikes(0.5*(1.0+np.cos(2.0*np.pi*(angle/180.0-phase))), gain)
|
||||
allspikes.append(spikes)
|
||||
spikesobj = np.zeros((len(allspikes), len(allspikes[0])), dtype=np.object)
|
||||
for k in range(len(allspikes)):
|
||||
@ -89,10 +89,10 @@ for unit, (phase, gain) in enumerate(zip(unitphases, unitgains)):
|
||||
nangles = 50
|
||||
angles = 180.0*np.random.rand(nangles)
|
||||
for k, angle in enumerate(angles):
|
||||
print '%.0f' % angle
|
||||
print 'angle = %.0f' % angle
|
||||
allspikes = []
|
||||
for unit, (phase, gain) in enumerate(zip(unitphases, unitgains)):
|
||||
spikes = lifadaptspikes(0.5*(1.0-np.cos(2.0*np.pi*(angle/180.0-phase))), gain)
|
||||
spikes = lifadaptspikes(0.5*(1.0+np.cos(2.0*np.pi*(angle/180.0-phase))), gain)
|
||||
allspikes.append(spikes)
|
||||
spikesobj = np.zeros((len(allspikes), len(allspikes[0])), dtype=np.object)
|
||||
for i in range(len(allspikes)):
|
||||
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
@ -35,8 +35,6 @@
|
||||
\texttt{spikes} variables of the \texttt{population*.mat} files.
|
||||
The \texttt{angle} variable holds the angle of the presented bar.
|
||||
|
||||
%NOTE: the orientation is angle plus 90 degree!!!!!!
|
||||
|
||||
\continue
|
||||
\begin{parts}
|
||||
\part Illustrate the spiking activity of the V1 cells in response
|
||||
@ -50,13 +48,11 @@
|
||||
of the neurons.
|
||||
|
||||
\part Fit the function \[ r(\varphi) =
|
||||
g(1-\cos(\varphi-\varphi_0))/2 \] to the measured tuning curves in
|
||||
g(1+\cos(\varphi-\varphi_0))/2 \] to the measured tuning curves in
|
||||
order to estimated the orientation angle at which the neurons
|
||||
respond strongest. In this function $\varphi_0$ is the position of
|
||||
the peak (really? How exactly is $\varphi_0$ related to the
|
||||
position of the peak? Do you find a better function where
|
||||
$\varphi_0$ is identical with the peak position?) and $g$ is a
|
||||
gain factor that sets the maximum firing rate.
|
||||
the peak and $g$ is a gain factor that sets the maximum firing
|
||||
rate.
|
||||
|
||||
\part How can the orientation angle of the presented bar be read
|
||||
out from one trial of the population activity of the 6 neurons?
|
||||
@ -70,8 +66,8 @@
|
||||
An alternative read out is maximum likelihood (see script).
|
||||
|
||||
Load one of the \texttt{population*.mat} files, illustrate the
|
||||
data, and estimate the orientation angle of the bar by the two
|
||||
different methods.
|
||||
data, and estimate the orientation angle of the bar from single
|
||||
trial data by the two different methods.
|
||||
|
||||
\part Compare, illustrate and discuss the performance of your two
|
||||
decoding methods by using all of the recorded responses (all
|
||||
@ -81,16 +77,16 @@
|
||||
\end{parts}
|
||||
\end{questions}
|
||||
|
||||
%NOTE: change data generation such that the phase variable is indeed
|
||||
%the maximum response and not the minumum!
|
||||
|
||||
\end{document}
|
||||
|
||||
|
||||
gains and angles of the 6 neurons:
|
||||
|
||||
14.6 0
|
||||
17.1 36
|
||||
17.6 72
|
||||
14.1 107
|
||||
10.7 144
|
||||
11.4 181
|
||||
gain=10.7 phase=5
|
||||
gain=18.0 phase=38
|
||||
gain=11.3 phase=71
|
||||
gain=14.1 phase=108
|
||||
gain=19.0 phase=138
|
||||
gain=16.4 phase=174
|
||||
|
||||
|
||||
|
@ -1,7 +1,9 @@
|
||||
close all
|
||||
files = dir('../unit*.mat');
|
||||
datapath = '../';
|
||||
% datapath = '../code/';
|
||||
files = dir(strcat(datapath, 'unit*.mat'));
|
||||
for file = files'
|
||||
a = load(strcat('../', file.name));
|
||||
a = load(strcat(datapath, file.name));
|
||||
spikes = a.spikes;
|
||||
angles = a.angles;
|
||||
figure()
|
||||
@ -14,13 +16,13 @@ end
|
||||
|
||||
%% tuning curves:
|
||||
close all
|
||||
cosine = @(p,xdata)0.5*p(1).*(1.0-cos(2.0*pi*(xdata/180.0-p(2))));
|
||||
files = dir('../unit*.mat');
|
||||
cosine = @(p,xdata)0.5*p(1).*(1.0+cos(2.0*pi*(xdata/180.0-p(2))));
|
||||
files = dir(strcat(datapath, 'unit*.mat'));
|
||||
phases = zeros(length(files), 1);
|
||||
figure()
|
||||
for j = 1:length(files)
|
||||
file = files(j);
|
||||
a = load(strcat('../', file.name));
|
||||
a = load(strcat(datapath, file.name));
|
||||
spikes = a.spikes;
|
||||
angles = a.angles;
|
||||
rates = zeros(size(spikes, 1), 1);
|
||||
@ -32,10 +34,13 @@ for j = 1:length(files)
|
||||
p0 = [mr, angles(maxi)/180.0-0.5];
|
||||
%p = p0;
|
||||
p = lsqcurvefit(cosine, p0, angles, rates');
|
||||
phase = p(2)*180.0 + 90.0;
|
||||
phase = p(2)*180.0;
|
||||
if phase > 180.0
|
||||
phase = phase - 180.0;
|
||||
end
|
||||
if phase < 0.0
|
||||
phase = phase + 180.0;
|
||||
end
|
||||
phases(j) = phase;
|
||||
subplot(2, 3, j);
|
||||
plot(angles, rates, 'b');
|
||||
@ -49,40 +54,45 @@ end
|
||||
|
||||
|
||||
%% read out:
|
||||
a = load('../population04.mat');
|
||||
a = load(strcat(datapath, 'population04.mat'));
|
||||
spikes = a.spikes;
|
||||
angle = a.angle;
|
||||
unitphases = a.phases*180.0 + 90.0;
|
||||
unitphases = a.phases*180.0;
|
||||
unitphases(unitphases>180.0) = unitphases(unitphases>180.0) - 180.0;
|
||||
figure();
|
||||
subplot(1, 3, 1);
|
||||
angleestimates1 = zeros(size(spikes, 2), 1);
|
||||
angleestimates2 = zeros(size(spikes, 2), 1);
|
||||
[x, inx] = sort(phases);
|
||||
% loop over trials:
|
||||
for j = 1:size(spikes, 2)
|
||||
rates = zeros(size(spikes, 1), 1);
|
||||
for k = 1:size(spikes, 1)
|
||||
r = firingrate(spikes(k, j), 0.0, 0.2);
|
||||
rates(k) = r;
|
||||
end
|
||||
[x, inx] = sort(phases);
|
||||
plot(phases(inx), rates(inx), '-o');
|
||||
hold on;
|
||||
angleestimates1(j) = popvecangle(phases, rates);
|
||||
[m, i] = max(rates);
|
||||
angleestimates2(j) = phases(i);
|
||||
end
|
||||
xlabel('preferred angle')
|
||||
ylabel('firing rate')
|
||||
hold off;
|
||||
subplot(1, 3, 2);
|
||||
hist(angleestimates1);
|
||||
xlabel('stimulus angle')
|
||||
subplot(1, 3, 3);
|
||||
hist(angleestimates2);
|
||||
xlabel('stimulus angle')
|
||||
angle
|
||||
mean(angleestimates1)
|
||||
mean(angleestimates2)
|
||||
|
||||
|
||||
%% read out robustness:
|
||||
files = dir('../population*.mat');
|
||||
files = dir(strcat(datapath, 'population*.mat'));
|
||||
angles = zeros(length(files), 1);
|
||||
e1m = zeros(length(files), 1);
|
||||
e1s = zeros(length(files), 1);
|
||||
@ -90,7 +100,7 @@ e2m = zeros(length(files), 1);
|
||||
e2s = zeros(length(files), 1);
|
||||
for i = 1:length(files)
|
||||
file = files(i);
|
||||
a = load(strcat('../', file.name));
|
||||
a = load(strcat(datapath, file.name));
|
||||
spikes = a.spikes;
|
||||
angle = a.angle;
|
||||
angleestimates1 = zeros(size(spikes, 2), 1);
|
||||
@ -114,5 +124,9 @@ end
|
||||
figure();
|
||||
subplot(1, 2, 1);
|
||||
scatter(angles, e1m);
|
||||
xlabel('stimuluis angle')
|
||||
ylabel('estimated angle')
|
||||
subplot(1, 2, 2);
|
||||
scatter(angles, e2m);
|
||||
xlabel('stimuluis angle')
|
||||
ylabel('estimated angle')
|
||||
|
Reference in New Issue
Block a user