files for friday
This commit is contained in:
parent
3b82ea3f10
commit
c36db93aed
BIN
programming/exercises/STA/p-unit_spike_times.mat
Normal file
BIN
programming/exercises/STA/p-unit_spike_times.mat
Normal file
Binary file not shown.
BIN
programming/exercises/STA/p-unit_stimulus.mat
Normal file
BIN
programming/exercises/STA/p-unit_stimulus.mat
Normal file
Binary file not shown.
18
programming/exercises/STA/sta.m
Normal file
18
programming/exercises/STA/sta.m
Normal file
@ -0,0 +1,18 @@
|
||||
function [sta, std_sta, valid_spikes]= sta(stimulus, spike_times, count, sampling_rate)
|
||||
|
||||
snippets = zeros(numel(spike_times), 2*count);
|
||||
valid_spikes = 1;
|
||||
for i = 1:numel(spike_times)
|
||||
t = spike_times(i);
|
||||
index = round(t*sampling_rate);
|
||||
if index < count || (index + count) > length(stimulus)
|
||||
continue
|
||||
end
|
||||
snippets(valid_spikes,:) = stimulus(index-count:index+count-1);
|
||||
valid_spikes = valid_spikes + 1;
|
||||
end
|
||||
|
||||
snippets(end-(end-valid_spikes):end,:) = [];
|
||||
|
||||
sta = mean(snippets, 1);
|
||||
std_sta = std(snippets,[],1);
|
62
programming/exercises/STA/sta_script.m
Normal file
62
programming/exercises/STA/sta_script.m
Normal file
@ -0,0 +1,62 @@
|
||||
clear
|
||||
clc
|
||||
|
||||
%% load data
|
||||
load p-unit_spike_times.mat
|
||||
load p-unit_stimulus.mat
|
||||
sample_rate = 20000;
|
||||
|
||||
%% calculate STA
|
||||
all_times = [];
|
||||
for i = 1:length(spike_times)
|
||||
all_times = cat(1, all_times, spike_times{i});
|
||||
end
|
||||
|
||||
[sta, sta_sd, num] = sta(stimulus_strong(:,2), all_times, 1000, sample_rate);
|
||||
fig = figure();
|
||||
set(fig, 'PaperUnits', 'centimeters');
|
||||
set(fig, 'PaperSize', [11.7 9.0]);
|
||||
set(fig, 'PaperPosition',[0.0 0.0 11.7 9.0]);
|
||||
set(fig,'Color', 'white')
|
||||
plot(((1:length(sta))-1000)/sample_rate, sta)
|
||||
xlabel('time [s]')
|
||||
ylabel('stimulus')
|
||||
|
||||
%% reverse reconstruction
|
||||
|
||||
% make binary representation of the spike times
|
||||
binary_spikes = zeros(size(stimulus_strong, 1), length(spike_times));
|
||||
estimated_stims = zeros(size(binary_spikes));
|
||||
for i = 1:length(spike_times)
|
||||
binary_spikes(round(spike_times{i}*sample_rate), i) = 1;
|
||||
estimated_stims(:,i) = conv(binary_spikes(:,i), sta, 'same');
|
||||
end
|
||||
|
||||
fig = figure();
|
||||
set(fig, 'PaperUnits', 'centimeters');
|
||||
set(fig, 'PaperSize', [11.7 9.0]);
|
||||
set(fig, 'PaperPosition',[0.0 0.0 11.7 9.0]);
|
||||
set(fig,'Color', 'white')
|
||||
plot(stimulus_strong(:,1), stimulus_strong(:,2), 'displayname','original')
|
||||
hold on
|
||||
plot(stimulus_strong(:,1), mean(estimated_stims,2), 'r', 'displayname', 'reconstruction')
|
||||
xlabel('time [s]')
|
||||
ylabel('stimulus')
|
||||
legend show
|
||||
|
||||
%% calculate STC
|
||||
|
||||
% we need to downsample the data otherwise the covariance matrixs gets too
|
||||
% large 20Khz to 1kHz
|
||||
|
||||
downsampled_binary = zeros(size(stimulus_strong, 1)/20, length(spike_times));
|
||||
downsampled_stim = zeros(size(downsampled_binary,1),1);
|
||||
|
||||
for i = 1:length(spike_times)
|
||||
binary_spikes(round(spike_times{i}*1000), i) = 1;
|
||||
end
|
||||
for i = 1:length(downsampled_stim)
|
||||
start_index = (i-1) * 1000 + 1;
|
||||
downsampled_stim(i) = mean(stimulus_strong()*20))
|
||||
end
|
||||
|
Reference in New Issue
Block a user