new project on serial correlations
This commit is contained in:
parent
1e5c588c31
commit
a932ca022f
10
projects/project_serialcorrelation/Makefile
Normal file
10
projects/project_serialcorrelation/Makefile
Normal file
@ -0,0 +1,10 @@
|
|||||||
|
latex:
|
||||||
|
pdflatex *.tex > /dev/null
|
||||||
|
pdflatex *.tex > /dev/null
|
||||||
|
|
||||||
|
clean:
|
||||||
|
rm -rf *.log *.aux *.zip *.out auto
|
||||||
|
rm -f `basename *.tex .tex`.pdf
|
||||||
|
|
||||||
|
zip: latex
|
||||||
|
zip `basename *.tex .tex`.zip *.pdf *.dat *.mat *.m
|
BIN
projects/project_serialcorrelation/baselinespikes.mat
Normal file
BIN
projects/project_serialcorrelation/baselinespikes.mat
Normal file
Binary file not shown.
365
projects/project_serialcorrelation/code/DataLoader.py
Normal file
365
projects/project_serialcorrelation/code/DataLoader.py
Normal file
@ -0,0 +1,365 @@
|
|||||||
|
from os import path
|
||||||
|
try:
|
||||||
|
from itertools import izip
|
||||||
|
except:
|
||||||
|
izip = zip
|
||||||
|
import types
|
||||||
|
from numpy import array, arange, NaN, fromfile, float32, asarray, unique, squeeze, Inf, isnan, fromstring
|
||||||
|
from numpy.core.records import fromarrays
|
||||||
|
#import nixio as nix
|
||||||
|
import re
|
||||||
|
import warnings
|
||||||
|
|
||||||
|
identifiers = {
|
||||||
|
'stimspikes1.dat': lambda info: ('RePro' in info[-1] and info[-1]['RePro'] == 'FileStimulus'),
|
||||||
|
'samallspikes1.dat': lambda info: ('RePro' in info[-1] and info[-1]['RePro'] == 'SAM'),
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
def isfloat(value):
|
||||||
|
try:
|
||||||
|
float(value)
|
||||||
|
return True
|
||||||
|
except ValueError:
|
||||||
|
return False
|
||||||
|
|
||||||
|
|
||||||
|
def info_filter(iter, filterfunc):
|
||||||
|
for info, key, dat in iter:
|
||||||
|
if filterfunc(info):
|
||||||
|
yield info, key, dat
|
||||||
|
|
||||||
|
def iload_io_pairs(basedir, spikefile, traces, filterfunc=None):
|
||||||
|
"""
|
||||||
|
Iterator that returns blocks of spike traces and spike times from the base directory basedir (e.g. 2014-06-06-aa)
|
||||||
|
and the spiketime file (e.g. stimspikes1.dat). A filter function can filter out unwanted blocks. It gets the info
|
||||||
|
(see iload and iload trace_trials) from all traces and spike times and has to return True is the block is wanted
|
||||||
|
and False otherwise.
|
||||||
|
|
||||||
|
:param basedir: basis directory of the recordings (e.g. 2014-06-06-aa)
|
||||||
|
:param spikefile: spikefile (e.g. stimspikes1.dat)
|
||||||
|
:param traces: trace numbers as a list (e.g. [1,2])
|
||||||
|
:param filterfunc: function that gets the infos from all traces and spike times and indicates whether the block is wanted or not
|
||||||
|
"""
|
||||||
|
|
||||||
|
if filterfunc is None: filterfunc = lambda inp: True
|
||||||
|
|
||||||
|
if type(traces) is not types.ListType:
|
||||||
|
traces = [traces]
|
||||||
|
|
||||||
|
assert spikefile in identifiers, """iload_io_pairs does not know how to identify trials in stimuli.dat which
|
||||||
|
correspond to trials in {0}. Please update pyRELACS.DataLoader.identifiers
|
||||||
|
accordingly""".format(spikefile)
|
||||||
|
iterators = [info_filter(iload_trace_trials(basedir, tn), identifiers[spikefile]) for tn in traces] \
|
||||||
|
+ [iload_spike_blocks(basedir + '/' + spikefile)]
|
||||||
|
|
||||||
|
for stuff in izip(*iterators):
|
||||||
|
info, key, dat = zip(*stuff)
|
||||||
|
if filterfunc(*info):
|
||||||
|
yield info, key, dat
|
||||||
|
|
||||||
|
def iload_spike_blocks(filename):
|
||||||
|
"""
|
||||||
|
Loades spike times from filename and merges trials with incremental trial numbers into one block.
|
||||||
|
Spike times are assumed to be in seconds and are converted into ms.
|
||||||
|
"""
|
||||||
|
current_trial = -1
|
||||||
|
ret_dat = []
|
||||||
|
old_info = old_key = None
|
||||||
|
for info, key, dat in iload(filename):
|
||||||
|
if 'trial' in info[-1]:
|
||||||
|
if int(info[-1]['trial']) != current_trial + 1:
|
||||||
|
yield old_info[:-1], key, ret_dat
|
||||||
|
ret_dat = []
|
||||||
|
|
||||||
|
current_trial = int(info[-1]['trial'])
|
||||||
|
if not any(isnan(dat)):
|
||||||
|
ret_dat.append(squeeze(dat)/1000.)
|
||||||
|
else:
|
||||||
|
ret_dat.append(array([]))
|
||||||
|
old_info, old_key = info, key
|
||||||
|
|
||||||
|
else:
|
||||||
|
if len(ret_dat) > 0:
|
||||||
|
yield old_info[:-1], old_key, ret_dat
|
||||||
|
ret_dat = []
|
||||||
|
yield info, key, dat
|
||||||
|
else:
|
||||||
|
if len(ret_dat) > 0:
|
||||||
|
yield old_info[:-1], old_key, ret_dat
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
def iload_trace_trials(basedir, trace_no=1, before=0.0, after=0.0 ):
|
||||||
|
"""
|
||||||
|
returns:
|
||||||
|
info : metadata from stimuli.dat
|
||||||
|
key : key from stimuli.dat
|
||||||
|
data : the data of the specified trace of all trials
|
||||||
|
"""
|
||||||
|
x = fromfile('%s/trace-%i.raw' % (basedir, trace_no), float32)
|
||||||
|
p = re.compile('([-+]?\d*\.\d+|\d+)\s*(\w+)')
|
||||||
|
|
||||||
|
for info, key, dat in iload('%s/stimuli.dat' % (basedir,)):
|
||||||
|
X = []
|
||||||
|
val, unit = p.match(info[-1]['duration']).groups()
|
||||||
|
val = float( val )
|
||||||
|
if unit == 'ms' :
|
||||||
|
val *= 0.001
|
||||||
|
duration_index = key[2].index('duration')
|
||||||
|
|
||||||
|
# if 'RePro' in info[1] and info[1]['RePro'] == 'FileStimulus':
|
||||||
|
# embed()
|
||||||
|
# exit()
|
||||||
|
sval, sunit = p.match(info[0]['sample interval%i' % trace_no]).groups()
|
||||||
|
sval = float( sval )
|
||||||
|
if sunit == 'ms' :
|
||||||
|
sval *= 0.001
|
||||||
|
|
||||||
|
l = int(before / sval)
|
||||||
|
r = int((val+after) / sval)
|
||||||
|
|
||||||
|
if dat.shape == (1,1) and dat[0,0] == 0:
|
||||||
|
warnings.warn("iload_trace_trials: Encountered incomplete '-0' trial.")
|
||||||
|
yield info, key, array([])
|
||||||
|
continue
|
||||||
|
|
||||||
|
|
||||||
|
for col, duration in zip(asarray([e[trace_no - 1] for e in dat], dtype=int), asarray([e[duration_index] for e in dat], dtype=float32)): #dat[:,trace_no-1].astype(int):
|
||||||
|
tmp = x[col-l:col + r]
|
||||||
|
|
||||||
|
if duration < 0.001: # if the duration is less than 1ms
|
||||||
|
warnings.warn("iload_trace_trials: Skipping one trial because its duration is <1ms and therefore it is probably rubbish")
|
||||||
|
continue
|
||||||
|
|
||||||
|
if len(X) > 0 and len(tmp) != len(X[0]):
|
||||||
|
warnings.warn("iload_trace_trials: Setting one trial to NaN because it appears to be incomplete!")
|
||||||
|
X.append(NaN*X[0])
|
||||||
|
else:
|
||||||
|
X.append(tmp)
|
||||||
|
|
||||||
|
yield info, key, asarray(X)
|
||||||
|
|
||||||
|
|
||||||
|
def iload_traces(basedir, repro='', before=0.0, after=0.0 ):
|
||||||
|
"""
|
||||||
|
returns:
|
||||||
|
info : metadata from stimuli.dat
|
||||||
|
key : key from stimuli.dat
|
||||||
|
time : an array for the time axis
|
||||||
|
data : the data of all traces of a single trial
|
||||||
|
"""
|
||||||
|
p = re.compile('([-+]?\d*\.\d+|\d+)\s*(\w+)')
|
||||||
|
|
||||||
|
# open traces files:
|
||||||
|
sf = []
|
||||||
|
for trace in xrange( 1, 1000000 ) :
|
||||||
|
if path.isfile( '%s/trace-%i.raw' % (basedir, trace) ) :
|
||||||
|
sf.append( open( '%s/trace-%i.raw' % (basedir, trace), 'rb' ) )
|
||||||
|
else :
|
||||||
|
break
|
||||||
|
|
||||||
|
for info, key, dat in iload('%s/stimuli.dat' % (basedir,)):
|
||||||
|
|
||||||
|
if len( repro ) > 0 and repro != info[1]['RePro'] :
|
||||||
|
continue
|
||||||
|
|
||||||
|
val, unit = p.match(info[-1]['duration']).groups()
|
||||||
|
val = float( val )
|
||||||
|
if unit == 'ms' :
|
||||||
|
val *= 0.001
|
||||||
|
duration_index = key[2].index('duration')
|
||||||
|
|
||||||
|
sval, sunit = p.match(info[0]['sample interval%i' % 1]).groups()
|
||||||
|
sval = float( sval )
|
||||||
|
if sunit == 'ms' :
|
||||||
|
sval *= 0.001
|
||||||
|
|
||||||
|
l = int(before / sval)
|
||||||
|
r = int((val+after) / sval)
|
||||||
|
|
||||||
|
if dat.shape == (1,1) and dat[0,0] == 0:
|
||||||
|
warnings.warn("iload_traces: Encountered incomplete '-0' trial.")
|
||||||
|
yield info, key, array([])
|
||||||
|
continue
|
||||||
|
|
||||||
|
deltat, unit = p.match(info[0]['sample interval1']).groups()
|
||||||
|
deltat = float( deltat )
|
||||||
|
if unit == 'ms' :
|
||||||
|
deltat *= 0.001
|
||||||
|
time = arange( 0.0, l+r )*deltat - before
|
||||||
|
|
||||||
|
for d in dat :
|
||||||
|
duration = d[duration_index]
|
||||||
|
if duration < 0.001: # if the duration is less than 1ms
|
||||||
|
warnings.warn("iload_traces: Skipping one trial because its duration is <1ms and therefore it is probably rubbish")
|
||||||
|
continue
|
||||||
|
|
||||||
|
x = []
|
||||||
|
for trace in xrange( len( sf ) ) :
|
||||||
|
col = int(d[trace])
|
||||||
|
sf[trace].seek( (col-l)*4 )
|
||||||
|
buffer = sf[trace].read( (l+r)*4 )
|
||||||
|
tmp = fromstring(buffer, float32)
|
||||||
|
if len(x) > 0 and len(tmp) != len(x[0]):
|
||||||
|
warnings.warn("iload_traces: Setting one trial to NaN because it appears to be incomplete!")
|
||||||
|
x.append(NaN*x[0])
|
||||||
|
else:
|
||||||
|
x.append(tmp)
|
||||||
|
|
||||||
|
yield info, key, time, asarray( x )
|
||||||
|
|
||||||
|
|
||||||
|
def iload(filename):
|
||||||
|
meta_data = []
|
||||||
|
new_meta_data = []
|
||||||
|
key = []
|
||||||
|
|
||||||
|
within_key = within_meta_block = within_data_block = False
|
||||||
|
currkey = None
|
||||||
|
data = []
|
||||||
|
|
||||||
|
with open(filename, 'r') as fid:
|
||||||
|
for line in fid:
|
||||||
|
|
||||||
|
line = line.rstrip().lstrip()
|
||||||
|
|
||||||
|
if within_data_block and (line.startswith('#') or not line):
|
||||||
|
within_data_block = False
|
||||||
|
|
||||||
|
yield list(meta_data), tuple(key), array(data)
|
||||||
|
data = []
|
||||||
|
|
||||||
|
# Key parsing
|
||||||
|
if line.startswith('#Key'):
|
||||||
|
key = []
|
||||||
|
within_key = True
|
||||||
|
continue
|
||||||
|
if within_key:
|
||||||
|
if not line.startswith('#'):
|
||||||
|
within_key = False
|
||||||
|
else:
|
||||||
|
|
||||||
|
key.append(tuple([e.strip() for e in line[1:].split(" ") if len(e.strip()) > 0]))
|
||||||
|
continue
|
||||||
|
|
||||||
|
# fast forward to first data point or meta data
|
||||||
|
if not line:
|
||||||
|
within_key = within_meta_block = False
|
||||||
|
currkey = None
|
||||||
|
continue
|
||||||
|
# meta data blocks
|
||||||
|
elif line.startswith('#'): # cannot be a key anymore
|
||||||
|
if not within_meta_block:
|
||||||
|
within_meta_block = True
|
||||||
|
new_meta_data.append({})
|
||||||
|
|
||||||
|
if ':' in line:
|
||||||
|
tmp = [e.rstrip().lstrip() for e in line[1:].split(':')]
|
||||||
|
elif '=' in line:
|
||||||
|
tmp = [e.rstrip().lstrip() for e in line[1:].split('=')]
|
||||||
|
else:
|
||||||
|
currkey = line[1:].rstrip().lstrip()
|
||||||
|
new_meta_data[-1][currkey] = {}
|
||||||
|
continue
|
||||||
|
|
||||||
|
if currkey is None:
|
||||||
|
new_meta_data[-1][tmp[0]] = tmp[1]
|
||||||
|
else:
|
||||||
|
new_meta_data[-1][currkey][tmp[0]] = tmp[1]
|
||||||
|
|
||||||
|
else:
|
||||||
|
|
||||||
|
if not within_data_block:
|
||||||
|
within_data_block = True
|
||||||
|
n = len(new_meta_data)
|
||||||
|
meta_data[-n:] = new_meta_data
|
||||||
|
new_meta_data = []
|
||||||
|
currkey = None
|
||||||
|
within_key = within_meta_block = False
|
||||||
|
data.append([float(e) if (e != '-0' and isfloat(e)) else NaN for e in line.split()])
|
||||||
|
else: # if for loop is finished, return the data we have so far
|
||||||
|
if within_data_block and len(data) > 0:
|
||||||
|
yield list(meta_data), tuple(key), array(data)
|
||||||
|
|
||||||
|
|
||||||
|
def recload(filename):
|
||||||
|
for meta, key, dat in iload(filename):
|
||||||
|
yield meta, fromarrays(dat.T, names=key[0])
|
||||||
|
|
||||||
|
|
||||||
|
def load(filename):
|
||||||
|
"""
|
||||||
|
|
||||||
|
Loads a data file saved by relacs. Returns a tuple of dictionaries
|
||||||
|
containing the data and the header information
|
||||||
|
|
||||||
|
:param filename: Filename of the data file.
|
||||||
|
:type filename: string
|
||||||
|
:returns: a tuple of dictionaries containing the head information and the data.
|
||||||
|
:rtype: tuple
|
||||||
|
|
||||||
|
"""
|
||||||
|
with open(filename, 'r') as fid:
|
||||||
|
L = [l.lstrip().rstrip() for l in fid.readlines()]
|
||||||
|
|
||||||
|
ret = []
|
||||||
|
dat = {}
|
||||||
|
X = []
|
||||||
|
keyon = False
|
||||||
|
currkey = None
|
||||||
|
for l in L:
|
||||||
|
# if empty line and we have data recorded
|
||||||
|
if (not l or l.startswith('#')) and len(X) > 0:
|
||||||
|
keyon = False
|
||||||
|
currkey = None
|
||||||
|
dat['data'] = array(X)
|
||||||
|
ret.append(dat)
|
||||||
|
X = []
|
||||||
|
dat = {}
|
||||||
|
|
||||||
|
if '---' in l:
|
||||||
|
continue
|
||||||
|
if l.startswith('#'):
|
||||||
|
if ":" in l:
|
||||||
|
tmp = [e.rstrip().lstrip() for e in l[1:].split(':')]
|
||||||
|
if currkey is None:
|
||||||
|
dat[tmp[0]] = tmp[1]
|
||||||
|
else:
|
||||||
|
dat[currkey][tmp[0]] = tmp[1]
|
||||||
|
elif "=" in l:
|
||||||
|
tmp = [e.rstrip().lstrip() for e in l[1:].split('=')]
|
||||||
|
if currkey is None:
|
||||||
|
dat[tmp[0]] = tmp[1]
|
||||||
|
else:
|
||||||
|
dat[currkey][tmp[0]] = tmp[1]
|
||||||
|
elif l[1:].lower().startswith('key'):
|
||||||
|
dat['key'] = []
|
||||||
|
|
||||||
|
keyon = True
|
||||||
|
elif keyon:
|
||||||
|
|
||||||
|
dat['key'].append(tuple([e.lstrip().rstrip() for e in l[1:].split()]))
|
||||||
|
else:
|
||||||
|
currkey = l[1:].rstrip().lstrip()
|
||||||
|
dat[currkey] = {}
|
||||||
|
|
||||||
|
elif l: # if l != ''
|
||||||
|
keyon = False
|
||||||
|
currkey = None
|
||||||
|
X.append([float(e) for e in l.split()])
|
||||||
|
|
||||||
|
if len(X) > 0:
|
||||||
|
dat['data'] = array(X)
|
||||||
|
else:
|
||||||
|
dat['data'] = []
|
||||||
|
ret.append(dat)
|
||||||
|
|
||||||
|
return tuple(ret)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
BIN
projects/project_serialcorrelation/code/DataLoader.pyc
Normal file
BIN
projects/project_serialcorrelation/code/DataLoader.pyc
Normal file
Binary file not shown.
@ -0,0 +1,30 @@
|
|||||||
|
03-03-28-ab
|
||||||
|
03-03-28-ac
|
||||||
|
03-03-28-af
|
||||||
|
03-03-31-ad
|
||||||
|
03-03-31-af
|
||||||
|
03-03-31-ai
|
||||||
|
03-03-31-ak
|
||||||
|
03-03-31-al
|
||||||
|
03-04-07-ab
|
||||||
|
03-04-07-ac
|
||||||
|
03-04-07-ad
|
||||||
|
03-04-07-ae
|
||||||
|
03-04-07-af
|
||||||
|
03-04-07-ag
|
||||||
|
03-04-07-aj
|
||||||
|
03-04-10-aa
|
||||||
|
03-04-10-ac
|
||||||
|
03-04-10-ad
|
||||||
|
03-04-10-ae
|
||||||
|
03-04-10-af
|
||||||
|
03-04-10-ag
|
||||||
|
03-04-10-ah
|
||||||
|
03-04-10-ai
|
||||||
|
03-04-10-aj
|
||||||
|
03-04-14-ab
|
||||||
|
03-04-14-ad
|
||||||
|
03-04-14-ae
|
||||||
|
03-04-14-af
|
||||||
|
03-04-14-ah
|
||||||
|
03-04-16-ab
|
45
projects/project_serialcorrelation/code/transformdata.py
Normal file
45
projects/project_serialcorrelation/code/transformdata.py
Normal file
@ -0,0 +1,45 @@
|
|||||||
|
import numpy as np
|
||||||
|
from scipy.io import savemat
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
import DataLoader as dl
|
||||||
|
|
||||||
|
cells = []
|
||||||
|
spikes = []
|
||||||
|
with open('goodbaselinefiles.dat') as sf:
|
||||||
|
for line in sf:
|
||||||
|
cell = line.strip()
|
||||||
|
datapath = '/data/jan/data/efish/smallchirps/single/data/' + cell
|
||||||
|
for info, key, data in dl.iload(datapath + '/basespikes.dat'):
|
||||||
|
cells.append(cell)
|
||||||
|
spikes.append(data[:, 0])
|
||||||
|
break
|
||||||
|
|
||||||
|
spikesobj = np.zeros((len(spikes), ), dtype=np.object)
|
||||||
|
cellsobj = np.zeros((len(cells), ), dtype=np.object)
|
||||||
|
for k in range(len(spikes)):
|
||||||
|
spikesobj[k] = 0.001*spikes[k]
|
||||||
|
cellsobj[k] = cells[k]
|
||||||
|
savemat('baselinespikes.mat', mdict={'cells': cellsobj, 'spikes': spikesobj})
|
||||||
|
|
||||||
|
exit()
|
||||||
|
|
||||||
|
trial = 0
|
||||||
|
intensities = []
|
||||||
|
spikes = []
|
||||||
|
for info, key, data in dl.iload('03-04-07-ab-fispikes.dat'):
|
||||||
|
if info[0]['Index'] == '1':
|
||||||
|
trial = int(info[1]['Trial'])
|
||||||
|
intensity = float(info[1]['Intensity'].replace('mV/cm', ''))
|
||||||
|
if trial == 0:
|
||||||
|
intensities.append(intensity)
|
||||||
|
spikes.append([])
|
||||||
|
prevtrial = trial
|
||||||
|
spikes[-1].append(data[:, 0])
|
||||||
|
|
||||||
|
spikesobj = np.zeros((len(spikes), len(spikes[0])), dtype=np.object)
|
||||||
|
for k in range(len(spikes)):
|
||||||
|
for j in range(len(spikes[k])):
|
||||||
|
spikesobj[k, j] = 0.001*spikes[k][j]
|
||||||
|
|
||||||
|
savemat('ficurvespikes.mat', mdict={'intensities': intensities, 'spikes': spikesobj})
|
||||||
|
|
81
projects/project_serialcorrelation/serialcorrelation.tex
Normal file
81
projects/project_serialcorrelation/serialcorrelation.tex
Normal file
@ -0,0 +1,81 @@
|
|||||||
|
\documentclass[addpoints,11pt]{exam}
|
||||||
|
\usepackage{url}
|
||||||
|
\usepackage{color}
|
||||||
|
\usepackage{hyperref}
|
||||||
|
|
||||||
|
\pagestyle{headandfoot}
|
||||||
|
\runningheadrule
|
||||||
|
\firstpageheadrule
|
||||||
|
\firstpageheader{Scientific Computing}{Project Assignment}{11/05/2014
|
||||||
|
-- 11/06/2014}
|
||||||
|
%\runningheader{Homework 01}{Page \thepage\ of \numpages}{23. October 2014}
|
||||||
|
\firstpagefooter{}{}{}
|
||||||
|
\runningfooter{}{}{}
|
||||||
|
\pointsinmargin
|
||||||
|
\bracketedpoints
|
||||||
|
|
||||||
|
%\printanswers
|
||||||
|
%\shadedsolutions
|
||||||
|
|
||||||
|
|
||||||
|
\begin{document}
|
||||||
|
%%%%%%%%%%%%%%%%%%%%% Submission instructions %%%%%%%%%%%%%%%%%%%%%%%%%
|
||||||
|
\sffamily
|
||||||
|
% \begin{flushright}
|
||||||
|
% \gradetable[h][questions]
|
||||||
|
% \end{flushright}
|
||||||
|
|
||||||
|
\begin{center}
|
||||||
|
\input{../disclaimer.tex}
|
||||||
|
\end{center}
|
||||||
|
|
||||||
|
%%%%%%%%%%%%%% Questions %%%%%%%%%%%%%%%%%%%%%%%%%
|
||||||
|
|
||||||
|
\begin{questions}
|
||||||
|
\question P-unit electroreceptor afferents of the gymnotiform weakly
|
||||||
|
electric fish \textit{Apteronotus leptorhynchus} are spontaneously
|
||||||
|
active when the fish is not electrically stimulated.
|
||||||
|
\begin{itemize}
|
||||||
|
\item How does the firing rates and the serial correlations of the
|
||||||
|
interspike intervals vary between different cells?
|
||||||
|
\end{itemize}
|
||||||
|
|
||||||
|
In the file \texttt{baselinespikes.mat} you find two variables:
|
||||||
|
\texttt{cells} is a cell-array with the names of the recorded cells
|
||||||
|
and \texttt{spikes} is a cell array containing the spike times in
|
||||||
|
seconds of recorded spontaneous activity for each of these cells.
|
||||||
|
\begin{parts}
|
||||||
|
\part Load the data! How many cells are contained in the file?
|
||||||
|
|
||||||
|
\part Plot the spike rasters of a few cells.
|
||||||
|
|
||||||
|
For the presentation, choose a few cells based on the results of
|
||||||
|
this project.
|
||||||
|
|
||||||
|
By just looking on the spike rasters, what are the differences
|
||||||
|
betwen the cells?
|
||||||
|
|
||||||
|
\part Compute the firing rate of each cell, i.e. number of spikes per time.
|
||||||
|
|
||||||
|
Illustrate the results by means of a histogram and/or box whisker plot.
|
||||||
|
|
||||||
|
\part Compute and plot the serial correlations between interspike intervals up to lag 10.
|
||||||
|
|
||||||
|
What do you observe? In what way are the interspike-interval
|
||||||
|
correlations similar betwen the cells? How do they differ?
|
||||||
|
|
||||||
|
\part Implement a permutation test for computing the significance
|
||||||
|
at a 1\,\% level of the serial correlations. Illustrate for a few
|
||||||
|
cells the computed serial correlations and the 1\,\% and 99\,\%
|
||||||
|
percentile from the permutation test. At which lag are the serial
|
||||||
|
correlations clearly significant?
|
||||||
|
|
||||||
|
\part Are the serial correlations somehow dependent on the firing rate?
|
||||||
|
|
||||||
|
Plot the significant correlations against the firing rate. Do you
|
||||||
|
observe any dependence?
|
||||||
|
\end{parts}
|
||||||
|
|
||||||
|
\end{questions}
|
||||||
|
|
||||||
|
\end{document}
|
9
projects/project_serialcorrelation/solution/firingrate.m
Normal file
9
projects/project_serialcorrelation/solution/firingrate.m
Normal file
@ -0,0 +1,9 @@
|
|||||||
|
function rate = firingrate(spikes, tmin, tmax)
|
||||||
|
% mean firing rate between tmin and tmax.
|
||||||
|
rates = zeros(length(spikes), 1);
|
||||||
|
for i = 1:length(spikes)
|
||||||
|
times= spikes{i};
|
||||||
|
rates(i) = length(times((times>=tmin)&(times<=tmax)))/(tmax-tmin);
|
||||||
|
end
|
||||||
|
rate = mean(rates);
|
||||||
|
end
|
26
projects/project_serialcorrelation/solution/isiserialcorr.m
Normal file
26
projects/project_serialcorrelation/solution/isiserialcorr.m
Normal file
@ -0,0 +1,26 @@
|
|||||||
|
function isicorr = isiserialcorr(spikes, maxlag)
|
||||||
|
% serial correlation of interspike intervals
|
||||||
|
%
|
||||||
|
% isicorr = isiserialcorr(spikes, maxlag)
|
||||||
|
%
|
||||||
|
% Arguments:
|
||||||
|
% spikes: spike times in seconds
|
||||||
|
% maxlag: the maximum lag
|
||||||
|
%
|
||||||
|
% Returns:
|
||||||
|
% isicorr: vector with the serial correlations for lag 0 to maxlag
|
||||||
|
|
||||||
|
isivec = [];
|
||||||
|
for k = 1:length(spikes)
|
||||||
|
times = spikes{k};
|
||||||
|
isivec = [isivec; diff(times(:))];
|
||||||
|
end
|
||||||
|
|
||||||
|
lags = 0:maxlag;
|
||||||
|
isicorr = zeros(size(lags));
|
||||||
|
for k = 1:length(lags)
|
||||||
|
lag = lags(k);
|
||||||
|
if length(isivec) > lag+10 % ensure "enough" data
|
||||||
|
isicorr(k) = corr(isivec(1:end-lag), isivec(lag+1:end));
|
||||||
|
end
|
||||||
|
end
|
@ -0,0 +1,46 @@
|
|||||||
|
function [isicorr, lowerbound, upperbound] = isiserialcorrbootstrap(spikes, maxlag)
|
||||||
|
% serial correlation of interspike intervals
|
||||||
|
%
|
||||||
|
% isicorr = isiserialcorrbootstrap(spikes, maxlag)
|
||||||
|
%
|
||||||
|
% Arguments:
|
||||||
|
% spikes: spike times in seconds
|
||||||
|
% maxlag: the maximum lag
|
||||||
|
%
|
||||||
|
% Returns:
|
||||||
|
% isicorr: vector with the serial correlations for lag 0 to maxlag
|
||||||
|
|
||||||
|
isivec = [];
|
||||||
|
for k = 1:length(spikes)
|
||||||
|
times = spikes{k};
|
||||||
|
isivec = [isivec; diff(times(:))];
|
||||||
|
end
|
||||||
|
|
||||||
|
lags = 0:maxlag;
|
||||||
|
|
||||||
|
isicorr = zeros(size(lags));
|
||||||
|
for k = 1:length(lags)
|
||||||
|
lag = lags(k);
|
||||||
|
if length(isivec) > lag+10 % ensure "enough" data
|
||||||
|
isicorr(k) = corr(isivec(1:end-lag), isivec(lag+1:end));
|
||||||
|
end
|
||||||
|
end
|
||||||
|
|
||||||
|
repeats = 1000;
|
||||||
|
isicorrshuffled = zeros(repeats, length(lags));
|
||||||
|
for i = 1:repeats
|
||||||
|
isishuffled = isivec(randperm(length(isivec)));
|
||||||
|
for k = 1:length(lags)
|
||||||
|
lag = lags(k);
|
||||||
|
if length(isivec) > lag+10 % ensure "enough" data
|
||||||
|
isicorrshuffled(i, k) = corr(isishuffled(1:end-lag), isishuffled(lag+1:end));
|
||||||
|
end
|
||||||
|
end
|
||||||
|
end
|
||||||
|
bounds = prctile(isicorrshuffled, [1.0 99], 1);
|
||||||
|
lowerbound = bounds(1, :);
|
||||||
|
upperbound = bounds(2, :);
|
||||||
|
end
|
||||||
|
|
||||||
|
|
||||||
|
|
@ -0,0 +1,64 @@
|
|||||||
|
%% load data:
|
||||||
|
data = load('baselinespikes.mat');
|
||||||
|
spikes = data.spikes;
|
||||||
|
cells = data.cells;
|
||||||
|
|
||||||
|
%% print raster:
|
||||||
|
maxn = length(spikes);
|
||||||
|
if maxn > 5
|
||||||
|
maxn = 5;
|
||||||
|
end
|
||||||
|
figure()
|
||||||
|
for k = 1:maxn
|
||||||
|
subplot(maxn, 1, k);
|
||||||
|
spikeraster(spikes(k), 0.0, 1.0)
|
||||||
|
title(cells{k})
|
||||||
|
end
|
||||||
|
|
||||||
|
%% firing rates:
|
||||||
|
rates = zeros(length(spikes), 1);
|
||||||
|
for k = 1:length(spikes)
|
||||||
|
rates(k) = firingrate(spikes(k), 0.0, 9.0);
|
||||||
|
end
|
||||||
|
figure();
|
||||||
|
subplot(1, 2, 1);
|
||||||
|
boxplot(rates);
|
||||||
|
subplot(1, 2, 2);
|
||||||
|
hist(rates, 20)
|
||||||
|
|
||||||
|
|
||||||
|
%% serial correlations:
|
||||||
|
maxlag = 10;
|
||||||
|
lags = 0:maxlag;
|
||||||
|
corrs = zeros(length(spikes), 1);
|
||||||
|
figure();
|
||||||
|
for k = 1:length(spikes)
|
||||||
|
isicorrs = isiserialcorr(spikes(k), maxlag);
|
||||||
|
corrs(k) = isicorrs(2);
|
||||||
|
plot(lags, isicorrs);
|
||||||
|
hold on;
|
||||||
|
end
|
||||||
|
hold off;
|
||||||
|
figure();
|
||||||
|
plot(rates, corrs, 'o');
|
||||||
|
ylim([-0.7 0])
|
||||||
|
|
||||||
|
|
||||||
|
%% bootstrap serial correlations:
|
||||||
|
maxlag = 10;
|
||||||
|
lags = 0:maxlag;
|
||||||
|
figure();
|
||||||
|
for k = 1:maxn
|
||||||
|
[isicorr, lowerbound, upperbound] = isiserialcorrbootstrap(spikes(k), maxlag);
|
||||||
|
subplot(maxn, 1, k);
|
||||||
|
plot(lags, isicorr, 'b', 'linewidth', 2)
|
||||||
|
hold on;
|
||||||
|
plot(lags, lowerbound, 'r', 'linewidth', 1)
|
||||||
|
plot(lags, upperbound, 'r', 'linewidth', 1)
|
||||||
|
hold off;
|
||||||
|
end
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
30
projects/project_serialcorrelation/solution/spikeraster.m
Normal file
30
projects/project_serialcorrelation/solution/spikeraster.m
Normal file
@ -0,0 +1,30 @@
|
|||||||
|
function spikeraster(spikes, tmin, tmax)
|
||||||
|
% Display a spike raster of the spike times given in spikes.
|
||||||
|
%
|
||||||
|
% spikeraster(spikes, tmax)
|
||||||
|
% spikes: a cell array of vectors of spike times in seconds
|
||||||
|
% tmin: plot spike raster starting at tmin seconds
|
||||||
|
% tmax: plot spike raster upto tmax seconds
|
||||||
|
|
||||||
|
ntrials = length(spikes);
|
||||||
|
for k = 1:ntrials
|
||||||
|
times = spikes{k};
|
||||||
|
times = times((times>=tmin) & (times<=tmax));
|
||||||
|
if tmax < 1.5
|
||||||
|
times = 1000.0*times; % conversion to ms
|
||||||
|
end
|
||||||
|
for i = 1:length( times )
|
||||||
|
line([times(i) times(i)],[k-0.4 k+0.4], 'Color', 'k');
|
||||||
|
end
|
||||||
|
end
|
||||||
|
if (tmax-tmin) < 1.5
|
||||||
|
xlabel('Time [ms]');
|
||||||
|
xlim([1000.0*tmin 1000.0*tmax]);
|
||||||
|
else
|
||||||
|
xlabel('Time [s]');
|
||||||
|
xlim([tmin tmax]);
|
||||||
|
end
|
||||||
|
ylabel('Trials');
|
||||||
|
ylim([0.3 ntrials+0.7 ]);
|
||||||
|
end
|
||||||
|
|
Reference in New Issue
Block a user