From a8afe6b0209a158b7e4a6d93d0496696269528c3 Mon Sep 17 00:00:00 2001 From: Jan Benda Date: Tue, 10 Dec 2019 10:00:20 +0100 Subject: [PATCH] updated gradient descend exercise --- regression/exercises/exercises01.tex | 5 +++-- 1 file changed, 3 insertions(+), 2 deletions(-) diff --git a/regression/exercises/exercises01.tex b/regression/exercises/exercises01.tex index a58e3da..6d9e335 100644 --- a/regression/exercises/exercises01.tex +++ b/regression/exercises/exercises01.tex @@ -20,7 +20,7 @@ \else \newcommand{\stitle}{} \fi -\header{{\bfseries\large Exercise 10\stitle}}{{\bfseries\large Gradient descent}}{{\bfseries\large December 17th, 2018}} +\header{{\bfseries\large Exercise 10\stitle}}{{\bfseries\large Gradient descent}}{{\bfseries\large December 16th, 2019}} \firstpagefooter{Dr. Jan Grewe}{Phone: 29 74588}{Email: jan.grewe@uni-tuebingen.de} \runningfooter{}{\thepage}{} @@ -121,7 +121,8 @@ \part Use the functions \code{polyfit()} and \code{lsqcurvefit()} provided by matlab to find the slope and intercept of a straight - line that fits the data. + line that fits the data. Compare the resulting fit parameters of + those functions with the ones of your gradient descent algorithm. \begin{solution} \lstinputlisting{../code/linefit.m} \end{solution}