solution for regression exercises

This commit is contained in:
Jan Benda 2018-01-08 17:52:48 +01:00
parent 9265f75d12
commit 9c0559ab03
10 changed files with 243 additions and 36 deletions

View File

@ -0,0 +1,25 @@
% data:
load('lin_regression.mat')
% compute mean squared error for a range of slopes and intercepts:
slopes = -5:0.25:5;
intercepts = -30:1:30;
errors = zeros(length(slopes), length(intercepts));
for i = 1:length(slopes)
for j = 1:length(intercepts)
errors(i,j) = lsqError([slopes(i), intercepts(j)], x, y);
end
end
% minimum of error surface:
[me, mi] = min(errors(:));
[ia, ib] = ind2sub(size(errors), mi);
eparams = [errors(ia), errors(ib)];
% gradient descent:
pstart = [-2. 10.];
[params, errors] = descent(x, y, pstart);
% comparison:
fprintf('descent: %6.3f %6.3f\n', params(1), params(2));
fprintf('errors: %6.3f %6.3f\n', eparams(1), eparams(2));

15
regression/code/descent.m Normal file
View File

@ -0,0 +1,15 @@
function [params, errors] = descent(xdata, ydata, pstart)
mingradient = 0.1;
eps = 0.01;
errors = [];
params = pstart;
count = 1;
gradient = [100.0, 100.0];
while norm(gradient) > mingradient
gradient = lsqGradient(params, xdata, ydata);
errors(count) = lsqError(params, xdata, ydata);
params = params - eps .* gradient;
count = count + 1;
end
end

View File

@ -0,0 +1,22 @@
clear
close all
load('lin_regression.mat')
pstart = [-2. 10.];
[params, errors] = descent(x, y, pstart);
figure()
subplot(2,1,1)
hold on
scatter(x, y, 'displayname', 'data')
xx = min(x):0.01:max(x);
fx = params(1)*xx + params(2);
plot(xx, fx, 'displayname', 'fit')
xlabel('Input')
ylabel('Output')
grid on
legend show
subplot(2,1,2)
plot(errors)
xlabel('optimization steps')
ylabel('error')

View File

@ -1,6 +1,6 @@
load('lin_regression.mat');
% compute mean squared error for a range of sloopes and intercepts:
% compute mean squared error for a range of slopes and intercepts:
slopes = -5:0.25:5;
intercepts = -30:1:30;
error_surf = zeros(length(slopes), length(intercepts));

18
regression/code/linefit.m Normal file
View File

@ -0,0 +1,18 @@
% data:
load('lin_regression.mat')
% gradient descent:
pstart = [-2. 10.];
[params, errors] = descent(x, y, pstart);
% lsqcurvefit:
line = @(p, x) x.* p(1) + p(2);
cparams = lsqcurvefit(line, pstart, x, y);
% polyfit:
pparams = polyfit(x, y, 1);
% comparison:
fprintf('descent: %6.3f %6.3f\n', params(1), params(2));
fprintf('lsqcurvefit: %6.3f %6.3f\n', cparams(1), cparams(2));
fprintf('polyfit: %6.3f %6.3f\n', pparams(1), pparams(2));

View File

@ -0,0 +1,82 @@
\documentclass[12pt,a4paper,pdftex]{exam}
\usepackage[german]{babel}
\usepackage{natbib}
\usepackage{graphicx}
\usepackage[small]{caption}
\usepackage{sidecap}
\usepackage{pslatex}
\usepackage{amsmath}
\usepackage{amssymb}
\setlength{\marginparwidth}{2cm}
\usepackage[breaklinks=true,bookmarks=true,bookmarksopen=true,pdfpagemode=UseNone,pdfstartview=FitH,colorlinks=true,citecolor=blue]{hyperref}
%%%%% text size %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\usepackage[left=20mm,right=20mm,top=25mm,bottom=25mm]{geometry}
\pagestyle{headandfoot}
\ifprintanswers
\newcommand{\stitle}{: Solutions}
\else
\newcommand{\stitle}{}
\fi
\header{{\bfseries\large Exercise 11\stitle}}{{\bfseries\large Gradient descent}}{{\bfseries\large January 9th, 2018}}
\firstpagefooter{Dr. Jan Grewe}{Phone: 29 74588}{Email:
jan.grewe@uni-tuebingen.de}
\runningfooter{}{\thepage}{}
\setlength{\baselineskip}{15pt}
\setlength{\parindent}{0.0cm}
\setlength{\parskip}{0.3cm}
\renewcommand{\baselinestretch}{1.15}
\newcommand{\code}[1]{\texttt{#1}}
\renewcommand{\solutiontitle}{\noindent\textbf{Solution:}\par\noindent}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{document}
\input{instructions}
\begin{questions}
\question Implementiere den Gradientenabstieg f\"ur das Problem der
Parameteranpassung der linearen Geradengleichung an die Messdaten in
der Datei \emph{lin\_regression.mat}.
Die daf\"ur ben\"otigten Zutaten haben wir aus den vorangegangenen
\"Ubungen bereits vorbereitet. Wir brauchen: 1. Die Fehlerfunktion
(\code{meanSquareError()}), 2. die Zielfunktion (\code{lsqError()})
und 3. den Gradienten (\code{lsqGradient()}). Der Algorithmus f\"ur
den Abstieg lautet:
\begin{enumerate}
\item Starte mit einer beliebigen Parameterkombination $p_0 = (m_0,
b_0)$.
\item \label{computegradient} Berechne den Gradienten an der
akutellen Position $p_i$.
\item Wenn die L\"ange des Gradienten einen bestimmten Wert
unterschreitet, haben wir das Minum gefunden und k\"onnen die
Suche abbrechen. Wir suchen ja das Minimum, bei dem der Gradient
gleich Null ist. Da aus numerischen Gr\"unden der Gradient nie
exakt Null werden wird, k\"onnen wir nur fordern, dass er
hinreichend klein wird (z.B. \code{norm(gradient) < 0.1}).
\item \label{gradientstep} Gehe einen kleinen Schritt ($\epsilon =
0.01$) in die entgegensetzte Richtung des Gradienten:
\[p_{i+1} = p_i - \epsilon \cdot \nabla f_{cost}(m_i, b_i)\]
\item Wiederhole die Schritte \ref{computegradient} --
\ref{gradientstep}.
\end{enumerate}
\begin{parts}
\part Implementiere den Gradientenabstieg und merke Dir f\"ur jeden Schritt
die Parameterkombination und den zugehörigen Fehler.
\part Erstelle einen Plot der die Originaldaten sowie die Vorhersage mit der
besten Parameterkombination darstellt.
\part Stelle in einem weiteren Plot die Entwicklung des Fehlers als Funktion der
Optimierungsschritte dar.
\end{parts}
\end{questions}
\end{document}

View File

@ -19,7 +19,7 @@
\else
\newcommand{\stitle}{}
\fi
\header{{\bfseries\large Exercise 11\stitle}}{{\bfseries\large Gradient descend}}{{\bfseries\large January 9th, 2018}}
\header{{\bfseries\large Exercise 11\stitle}}{{\bfseries\large Gradient descent}}{{\bfseries\large January 9th, 2018}}
\firstpagefooter{Dr. Jan Grewe}{Phone: 29 74588}{Email:
jan.grewe@uni-tuebingen.de}
\runningfooter{}{\thepage}{}
@ -31,6 +31,24 @@
\newcommand{\code}[1]{\texttt{#1}}
\renewcommand{\solutiontitle}{\noindent\textbf{Solution:}\par\noindent}
%%%%% listings %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\usepackage{listings}
\lstset{
language=Matlab,
basicstyle=\ttfamily\footnotesize,
numbers=left,
numberstyle=\tiny,
title=\lstname,
showstringspaces=false,
commentstyle=\itshape\color{darkgray},
breaklines=true,
breakautoindent=true,
columns=flexible,
frame=single,
xleftmargin=1em,
xrightmargin=1em,
aboveskip=10pt
}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{document}
@ -39,42 +57,68 @@
\begin{questions}
\question Implementiere den Gradientenabstieg f\"ur das Problem der
Parameteranpassung der linearen Geradengleichung an die Messdaten in
der Datei \emph{lin\_regression.mat}.
\question Implement the gradient descent for finding the parameters
of a straigth line that we want to fit to the data in the file
\emph{lin\_regression.mat}.
Die daf\"ur ben\"otigten Zutaten haben wir aus den vorangegangenen
\"Ubungen bereits vorbereitet. Wir brauchen: 1. Die Fehlerfunktion
(\code{meanSquareError()}), 2. die Zielfunktion (\code{lsqError()})
und 3. den Gradienten (\code{lsqGradient()}). Der Algorithmus f\"ur
den Abstieg lautet:
In the lecture we already prepared the necessary functions: 1. the
error function (\code{meanSquareError()}), 2. the cost function
(\code{lsqError()}), and 3. the gradient (\code{lsqGradient()}).
The algorithm for the descent towards the minimum of the cost
function is as follows:
\begin{enumerate}
\item Starte mit einer beliebigen Parameterkombination $p_0 = (m_0,
b_0)$.
\item \label{computegradient} Berechne den Gradienten an der
akutellen Position $p_i$.
\item Wenn die L\"ange des Gradienten einen bestimmten Wert
unterschreitet, haben wir das Minum gefunden und k\"onnen die
Suche abbrechen. Wir suchen ja das Minimum, bei dem der Gradient
gleich Null ist. Da aus numerischen Gr\"unden der Gradient nie
exakt Null werden wird, k\"onnen wir nur fordern, dass er
hinreichend klein wird (z.B. \code{norm(gradient) < 0.1}).
\item \label{gradientstep} Gehe einen kleinen Schritt ($\epsilon =
0.01$) in die entgegensetzte Richtung des Gradienten:
\item Start with some arbitrary parameter values $p_0 = (m_0, b_0)$
for the slope and the intercept of the straight line.
\item \label{computegradient} Compute the gradient of the cost function
at the current values of the parameters $p_i$.
\item If the magnitude (length) of the gradient is smaller than some
small number, the algorithm converged close to the minimum of the
cost function and we abort the descent. Right at the minimum the
magnitude of the gradient is zero. However, since we determine
the gradient numerically, it will never be exactly zero. This is
why we require the gradient to be sufficiently small
(e.g. \code{norm(gradient) < 0.1}).
\item \label{gradientstep} Move against the gradient by a small step
($\epsilon = 0.01$):
\[p_{i+1} = p_i - \epsilon \cdot \nabla f_{cost}(m_i, b_i)\]
\item Wiederhole die Schritte \ref{computegradient} --
\ref{gradientstep}.
\item Repeat steps \ref{computegradient} -- \ref{gradientstep}.
\end{enumerate}
\begin{parts}
\part Implementiere den Gradientenabstieg und merke Dir f\"ur jeden Schritt
die Parameterkombination und den zugehörigen Fehler.
\part Erstelle einen Plot der die Originaldaten sowie die Vorhersage mit der
besten Parameterkombination darstellt.
\part Stelle in einem weiteren Plot die Entwicklung des Fehlers als Funktion der
Optimierungsschritte dar.
\part Implement the gradient descent in a function that returns
the parameter values at the minimum of the cost function and a vector
with the value of the cost function at each step of the algorithm.
\begin{solution}
\lstinputlisting{../code/descent.m}
\end{solution}
\part Plot the data and the straight line with the parameter
values that you found with the gradient descent method.
\part Plot the development of the costs as a function of the
iteration step.
\begin{solution}
\lstinputlisting{../code/descentfit.m}
\end{solution}
\part Find the position of the minimum of the cost function by
means of the \code{min()} function. Compare with the result of the
gradient descent method. Vary the value of $\epsilon$ and the
minimum gradient. What are good values such that the gradient
descent gets closest to the true minimum of the cost function?
\begin{solution}
\lstinputlisting{../code/checkdescent.m}
\end{solution}
\part Use the functions \code{polyfit()} and \code{lsqcurvefit()}
provided by matlab to find the slope and intercept of a straight
line that fits the data.
\begin{solution}
\lstinputlisting{../code/linefit.m}
\end{solution}
\end{parts}
\end{questions}

View File

@ -368,6 +368,7 @@ Punkte in Abbildung \ref{gradientdescentfig} gro{\ss}.
Optimierungsschritt an.} \label{gradientdescentfig}
\end{figure}
\setboolean{showexercisesolutions}{false}
\begin{exercise}{gradientDescent.m}{}
Implementiere den Gradientenabstieg f\"ur das Problem der
Parameteranpassung der linearen Geradengleichung an die Messdaten in
@ -409,6 +410,7 @@ Kostenfunktionen gemacht \matlabfun{fminsearch()}, w\"ahrend spezielle
Funktionen z.B. f\"ur die Minimierung des quadratischen Abstands bei
einem Kurvenfit angeboten werden \matlabfun{lsqcurvefit()}.
\newpage
\begin{important}[Achtung Nebenminima!]
Das Finden des globalen Minimums ist leider nur selten so leicht wie
bei einem Geradenfit. Oft hat die Kostenfunktion viele Nebenminima,

View File

@ -63,7 +63,6 @@
\lstset{inputpath=bootstrap/code}
\include{bootstrap/lecture/bootstrap}
\setboolean{showexercisesolutions}{false}
\graphicspath{{regression/lecture/}{regression/lecture/figures/}}
\lstset{inputpath=regression/code}
\include{regression/lecture/regression}

View File

@ -348,14 +348,14 @@ probability density functions like the one of the normal distribution
\subsection{Kernel densities}
A problem of using histograms for estimating probability densities is
that the have hard bin edges. Depending on where the bin edges are placed
that they have hard bin edges. Depending on where the bin edges are placed
a data value falls in one or the other bin.
\begin{figure}[t]
\includegraphics[width=1\textwidth]{kerneldensity}
\titlecaption{\label{kerneldensityfig} Kernel densities.}{Left: The
histogram-based estimation of the probability density is dependent
also on the position of the bins. In the bottom plot the bins have
on the position of the bins. In the bottom plot the bins have
bin shifted by half a bin width (here $\Delta x=0.4$) and as a
result details of the probability density look different. Look,
for example at the height of the largest bin. Right: In contrast,
@ -366,7 +366,7 @@ a data value falls in one or the other bin.
To avoid this problem one can use so called \enterm {kernel densities}
for estimating probability densities from data. Here every data point
is replaced by a kernel (a function with integral one, like for
example the Gaussian function) that is moved exactly to the position
example the Gaussian) that is moved exactly to the position
indicated by the data value. Then all the kernels of all the data
values are summed up, the sum is divided by the number of data values,
and we get an estimate of the probability density.
@ -417,7 +417,7 @@ and percentiles can be determined from the inverse cumulative function.
100 data values drawn from a normal distribution (red) in
comparison to the true cumulative distribution function computed
by numerically integrating the normal distribution function
(blue). From the cumulative distribution function one can read of
(blue). From the cumulative distribution function one can read off
the probabilities of getting values smaller than a given value
(here: $P(x \ge -1) \approx 0.15$). From the inverse cumulative
distribution the position of percentiles can be computed (here: