translated bootstrap exercises
This commit is contained in:
parent
e39f29847f
commit
9abe1c43f4
173
bootstrap/exercises/exercises01-de.tex
Normal file
173
bootstrap/exercises/exercises01-de.tex
Normal file
@ -0,0 +1,173 @@
|
||||
\documentclass[12pt,a4paper,pdftex]{exam}
|
||||
|
||||
\usepackage[german]{babel}
|
||||
\usepackage{pslatex}
|
||||
\usepackage[mediumspace,mediumqspace,Gray]{SIunits} % \ohm, \micro
|
||||
\usepackage{xcolor}
|
||||
\usepackage{graphicx}
|
||||
\usepackage[breaklinks=true,bookmarks=true,bookmarksopen=true,pdfpagemode=UseNone,pdfstartview=FitH,colorlinks=true,citecolor=blue]{hyperref}
|
||||
|
||||
%%%%% layout %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\usepackage[left=20mm,right=20mm,top=25mm,bottom=25mm]{geometry}
|
||||
\pagestyle{headandfoot}
|
||||
\ifprintanswers
|
||||
\newcommand{\stitle}{: L\"osungen}
|
||||
\else
|
||||
\newcommand{\stitle}{}
|
||||
\fi
|
||||
\header{{\bfseries\large \"Ubung\stitle}}{{\bfseries\large Bootstrap}}{{\bfseries\large 17. Januar, 2017}}
|
||||
\firstpagefooter{Prof. Dr. Jan Benda}{Phone: 29 74573}{Email:
|
||||
jan.benda@uni-tuebingen.de}
|
||||
\runningfooter{}{\thepage}{}
|
||||
|
||||
\setlength{\baselineskip}{15pt}
|
||||
\setlength{\parindent}{0.0cm}
|
||||
\setlength{\parskip}{0.3cm}
|
||||
\renewcommand{\baselinestretch}{1.15}
|
||||
|
||||
%%%%% listings %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\usepackage{listings}
|
||||
\lstset{
|
||||
language=Matlab,
|
||||
basicstyle=\ttfamily\footnotesize,
|
||||
numbers=left,
|
||||
numberstyle=\tiny,
|
||||
title=\lstname,
|
||||
showstringspaces=false,
|
||||
commentstyle=\itshape\color{darkgray},
|
||||
breaklines=true,
|
||||
breakautoindent=true,
|
||||
columns=flexible,
|
||||
frame=single,
|
||||
xleftmargin=1em,
|
||||
xrightmargin=1em,
|
||||
aboveskip=10pt
|
||||
}
|
||||
|
||||
%%%%% math stuff: %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\usepackage{amsmath}
|
||||
\usepackage{amssymb}
|
||||
\usepackage{bm}
|
||||
\usepackage{dsfont}
|
||||
\newcommand{\naZ}{\mathds{N}}
|
||||
\newcommand{\gaZ}{\mathds{Z}}
|
||||
\newcommand{\raZ}{\mathds{Q}}
|
||||
\newcommand{\reZ}{\mathds{R}}
|
||||
\newcommand{\reZp}{\mathds{R^+}}
|
||||
\newcommand{\reZpN}{\mathds{R^+_0}}
|
||||
\newcommand{\koZ}{\mathds{C}}
|
||||
|
||||
%%%%% page breaks %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\newcommand{\continue}{\ifprintanswers%
|
||||
\else
|
||||
\vfill\hspace*{\fill}$\rightarrow$\newpage%
|
||||
\fi}
|
||||
\newcommand{\continuepage}{\ifprintanswers%
|
||||
\newpage
|
||||
\else
|
||||
\vfill\hspace*{\fill}$\rightarrow$\newpage%
|
||||
\fi}
|
||||
\newcommand{\newsolutionpage}{\ifprintanswers%
|
||||
\newpage%
|
||||
\else
|
||||
\fi}
|
||||
|
||||
%%%%% new commands %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\newcommand{\qt}[1]{\textbf{#1}\\}
|
||||
\newcommand{\pref}[1]{(\ref{#1})}
|
||||
\newcommand{\extra}{--- Zusatzaufgabe ---\ \mbox{}}
|
||||
\newcommand{\code}[1]{\texttt{#1}}
|
||||
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\begin{document}
|
||||
|
||||
\input{instructions}
|
||||
|
||||
\begin{questions}
|
||||
|
||||
\question \qt{Bootstrap des Standardfehlers}
|
||||
Wir wollen den Standardfehler, die Standardabweichung des Mittelwerts,
|
||||
eines Datensatze mit Hilfe der Bootstrapmethode berechnen und mit der
|
||||
Formel ``Standardabweichung geteilt durch Wurzel aus $n$''
|
||||
vergleichen.
|
||||
\begin{parts}
|
||||
\part Lade von Ilias die Datei \code{thymusglandweights.dat} herunter.
|
||||
Darin befindet sich ein Datensatz vom Gewicht der Thymus Dr\"use in 14-Tage alten
|
||||
H\"uhnerembryos in mg.
|
||||
\part Lade diese Daten in Matlab (\code{load} Funktion).
|
||||
\part Bestimme Histogramm, Mittelwert und Standardfehler aus den ersten 80 Datenpunkten.
|
||||
\part Bestimme den Standardfehler aus den ersten 80 Datenpunkten durch 500-mal Bootstrappen.
|
||||
\part Bestimme das 95\,\% Konfidenzintervall f\"ur den Mittelwert
|
||||
aus der Bootstrap Verteilung (\code{quantile()} Funktion) --- also
|
||||
das Interval innerhalb dessen mit 95\,\% Wahrscheinlichkeit der
|
||||
wahre Mittelwert liegen wird.
|
||||
\part Benutze den ganzen Datensatz und die Bootstrapping Technik, um die Abh\"angigkeit
|
||||
des Standardfehlers von der Stichprobengr\"o{\ss}e zu bestimmen.
|
||||
\part Vergleiche mit der bekannten Formel f\"ur den Standardfehler $\sigma/\sqrt{n}$.
|
||||
\end{parts}
|
||||
\begin{solution}
|
||||
\lstinputlisting{bootstrapmean.m}
|
||||
\lstinputlisting{bootstraptymus.m}
|
||||
\includegraphics[width=0.5\textwidth]{bootstraptymus-datahist}
|
||||
\includegraphics[width=0.5\textwidth]{bootstraptymus-meanhist}
|
||||
\includegraphics[width=0.5\textwidth]{bootstraptymus-samples}
|
||||
\end{solution}
|
||||
|
||||
|
||||
\question \qt{Student t-Verteilung}
|
||||
Durch Standardabweichungen normierte Mittelwerte sind nicht Gaussverteilt,
|
||||
wenn beide aus Normalverteilten Daten abgesch\"atzt werden.
|
||||
Die Verteilung von $t=\bar x/(\sigma_x/\sqrt{m})$ folgt vielmehr
|
||||
der Student t-Verteilung.
|
||||
\begin{parts}
|
||||
\part Erzeuge 100000 normalverteilte Zufallszahlen.
|
||||
\part Ziehe daraus 1000 Stichproben vom Umfang $m=3$, 5, 10, oder 50.
|
||||
\part Berechne den Mittelwert $\bar x$ der Stichproben und plotte die Wahrscheinlichkeitsdichte
|
||||
dieser Mittelwerte.
|
||||
\part Vergleiche diese Wahrscheinlichkeitsdichte mit der Gausskurve.
|
||||
\part Berechne ausserdem die Gr\"o{\ss}e $t=\bar x/(\sigma_x/\sqrt{m})$
|
||||
(Standardabweichung $\sigma_x$) und vergleiche diese mit der Normalverteilung mit Standardabweichung Eins. Ist $t$ normalverteilt, bzw. unter welchen Bedingungen ist $t$ normalverteilt?
|
||||
\end{parts}
|
||||
\newsolutionpage
|
||||
\begin{solution}
|
||||
\lstinputlisting{tdistribution.m}
|
||||
\includegraphics[width=1\textwidth]{tdistribution-n03}\\
|
||||
\includegraphics[width=1\textwidth]{tdistribution-n05}\\
|
||||
\includegraphics[width=1\textwidth]{tdistribution-n10}\\
|
||||
\includegraphics[width=1\textwidth]{tdistribution-n50}
|
||||
\end{solution}
|
||||
|
||||
|
||||
\continue
|
||||
\question \qt{Permutationstest}
|
||||
Wir wollen die Signifikanz einer Korrelation durch einen
|
||||
Permutationstest bestimmen.
|
||||
\begin{parts}
|
||||
\part Erzeuge 1000 korrelierte Zufallszahlen $x$, $y$ durch
|
||||
\begin{verbatim}
|
||||
n = 1000
|
||||
a = 0.2;
|
||||
x = randn(n, 1);
|
||||
y = randn(n, 1) + a*x;
|
||||
\end{verbatim}
|
||||
\part Erstelle einen Scatterplot der beiden Variablen.
|
||||
\part Warum ist $y$ mit $x$ korreliert?
|
||||
\part Berechne den Korrelationskoeffizienten zwischen $x$ und $y$.
|
||||
\part Was m\"usste man tun, um die Korrelationen zwischen den $x$-$y$
|
||||
Paaren zu zerst\"oren?
|
||||
\part Mach genau dies 1000 mal und berechne jedes Mal den Korrelationskoeffizienten.
|
||||
\part Bestimme die Wahrscheinlichkeitsdichte dieser Korrelationskoeffizienten.
|
||||
\part Ist die Korrelation der urspr\"unglichen Daten signifikant?
|
||||
\part Variiere die Stichprobengr\"o{\ss}e \code{n} und \"uberpr\"ufe
|
||||
auf gleiche Weise die Signifikanz.
|
||||
\end{parts}
|
||||
\begin{solution}
|
||||
\lstinputlisting{correlationsignificance.m}
|
||||
\includegraphics[width=1\textwidth]{correlationsignificance}
|
||||
\end{solution}
|
||||
|
||||
|
||||
\end{questions}
|
||||
|
||||
\end{document}
|
@ -1,6 +1,6 @@
|
||||
\documentclass[12pt,a4paper,pdftex]{exam}
|
||||
|
||||
\usepackage[german]{babel}
|
||||
\usepackage[english]{babel}
|
||||
\usepackage{pslatex}
|
||||
\usepackage[mediumspace,mediumqspace,Gray]{SIunits} % \ohm, \micro
|
||||
\usepackage{xcolor}
|
||||
@ -11,11 +11,11 @@
|
||||
\usepackage[left=20mm,right=20mm,top=25mm,bottom=25mm]{geometry}
|
||||
\pagestyle{headandfoot}
|
||||
\ifprintanswers
|
||||
\newcommand{\stitle}{: L\"osungen}
|
||||
\newcommand{\stitle}{: Solutions}
|
||||
\else
|
||||
\newcommand{\stitle}{}
|
||||
\fi
|
||||
\header{{\bfseries\large \"Ubung\stitle}}{{\bfseries\large Bootstrap}}{{\bfseries\large 17. Januar, 2017}}
|
||||
\header{{\bfseries\large Exercise 9\stitle}}{{\bfseries\large Bootstrap}}{{\bfseries\large December 5th, 2017}}
|
||||
\firstpagefooter{Prof. Dr. Jan Benda}{Phone: 29 74573}{Email:
|
||||
jan.benda@uni-tuebingen.de}
|
||||
\runningfooter{}{\thepage}{}
|
||||
@ -87,24 +87,27 @@ jan.benda@uni-tuebingen.de}
|
||||
\begin{questions}
|
||||
|
||||
\question \qt{Bootstrap des Standardfehlers}
|
||||
Wir wollen den Standardfehler, die Standardabweichung des Mittelwerts,
|
||||
eines Datensatze mit Hilfe der Bootstrapmethode berechnen und mit der
|
||||
Formel ``Standardabweichung geteilt durch Wurzel aus $n$''
|
||||
vergleichen.
|
||||
We want to compute the standard error of the mean of a data set by
|
||||
means of the bootstrap method and compare the result with the formula
|
||||
``standard deviation divided by the square-root of $n$''.
|
||||
\begin{parts}
|
||||
\part Lade von Ilias die Datei \code{thymusglandweights.dat} herunter.
|
||||
Darin befindet sich ein Datensatz vom Gewicht der Thymus Dr\"use in 14-Tage alten
|
||||
H\"uhnerembryos in mg.
|
||||
\part Lade diese Daten in Matlab (\code{load} Funktion).
|
||||
\part Bestimme Histogramm, Mittelwert und Standardfehler aus den ersten 80 Datenpunkten.
|
||||
\part Bestimme den Standardfehler aus den ersten 80 Datenpunkten durch 500-mal Bootstrappen.
|
||||
\part Bestimme das 95\,\% Konfidenzintervall f\"ur den Mittelwert
|
||||
aus der Bootstrap Verteilung (\code{quantile()} Funktion) --- also
|
||||
das Interval innerhalb dessen mit 95\,\% Wahrscheinlichkeit der
|
||||
wahre Mittelwert liegen wird.
|
||||
\part Benutze den ganzen Datensatz und die Bootstrapping Technik, um die Abh\"angigkeit
|
||||
des Standardfehlers von der Stichprobengr\"o{\ss}e zu bestimmen.
|
||||
\part Vergleiche mit der bekannten Formel f\"ur den Standardfehler $\sigma/\sqrt{n}$.
|
||||
\part Download the file \code{thymusglandweights.dat} from Ilias.
|
||||
This is a data set of the weights of the thymus glands of 14-day old chicken embryos
|
||||
measured in milligram.
|
||||
\part Load the data into Matlab (\code{load} function).
|
||||
\part Compute histogram, mean, and standard error of the mean of the first 80 data points.
|
||||
\part Compute the standard error of the mean of the first 80 data
|
||||
points by means of 500 times bootstrapping. Write a function that
|
||||
bootstraps the standard error of the mean of a given data set. The
|
||||
function should also return a vector with the bootstrapped means.
|
||||
\part Compute the 95\,\% confidence interval for the mean from the
|
||||
bootstrap distribution (\code{quantile()} function) --- the
|
||||
interval that contains the true mean with 95\,\% probability.
|
||||
\part Use the whole data set and the bootstrap method for computing
|
||||
the dependence of the standard error of the mean from the sample
|
||||
size $n$.
|
||||
\part Compare your result with the formula for the standard error
|
||||
$\sigma/\sqrt{n}$.
|
||||
\end{parts}
|
||||
\begin{solution}
|
||||
\lstinputlisting{bootstrapmean.m}
|
||||
@ -115,19 +118,24 @@ vergleichen.
|
||||
\end{solution}
|
||||
|
||||
|
||||
\question \qt{Student t-Verteilung}
|
||||
Durch Standardabweichungen normierte Mittelwerte sind nicht Gaussverteilt,
|
||||
wenn beide aus Normalverteilten Daten abgesch\"atzt werden.
|
||||
Die Verteilung von $t=\bar x/(\sigma_x/\sqrt{m})$ folgt vielmehr
|
||||
der Student t-Verteilung.
|
||||
\question \qt{Student t-distribution}
|
||||
The distribution of Student's t, $t=\bar x/(\sigma_x/\sqrt{m})$, the
|
||||
estimated mean of a data set divided by the estimated standard error
|
||||
of the mean, is not a normal distribution but a Student-t distribution.
|
||||
We want to compute the Student-t distribution and compare it with the
|
||||
normal distribution.
|
||||
\begin{parts}
|
||||
\part Erzeuge 100000 normalverteilte Zufallszahlen.
|
||||
\part Ziehe daraus 1000 Stichproben vom Umfang $m=3$, 5, 10, oder 50.
|
||||
\part Berechne den Mittelwert $\bar x$ der Stichproben und plotte die Wahrscheinlichkeitsdichte
|
||||
dieser Mittelwerte.
|
||||
\part Vergleiche diese Wahrscheinlichkeitsdichte mit der Gausskurve.
|
||||
\part Berechne ausserdem die Gr\"o{\ss}e $t=\bar x/(\sigma_x/\sqrt{m})$
|
||||
(Standardabweichung $\sigma_x$) und vergleiche diese mit der Normalverteilung mit Standardabweichung Eins. Ist $t$ normalverteilt, bzw. unter welchen Bedingungen ist $t$ normalverteilt?
|
||||
\part Generate 100000 normally distributed random numbers.
|
||||
\part Draw from these data 1000 samples of size $n=3$, 5, 10, and 50.
|
||||
\part Compute the mean $\bar x$ of the samples and plot the
|
||||
probability density of these means.
|
||||
\part Compare the resulting probability densities with corresponding
|
||||
normal distributions.
|
||||
\part Compute in addition $t=\bar x/(\sigma_x/\sqrt{n})$ (standard
|
||||
deviation of the samples $\sigma_x$) and compare their distribution
|
||||
with the normal distribution with standard deviation of one. Is $t$
|
||||
normally distributed? Under which conditions is $t$ normally
|
||||
distributed?
|
||||
\end{parts}
|
||||
\newsolutionpage
|
||||
\begin{solution}
|
||||
@ -140,27 +148,26 @@ dieser Mittelwerte.
|
||||
|
||||
|
||||
\continue
|
||||
\question \qt{Permutationstest}
|
||||
Wir wollen die Signifikanz einer Korrelation durch einen
|
||||
Permutationstest bestimmen.
|
||||
\question \qt{Permutation test}
|
||||
We want to compute the significance of a correlation by means of a permutation test.
|
||||
\begin{parts}
|
||||
\part Erzeuge 1000 korrelierte Zufallszahlen $x$, $y$ durch
|
||||
\part Generate 1000 correlated pairs $x$, $y$ of random numbers according to:
|
||||
\begin{verbatim}
|
||||
n = 1000
|
||||
a = 0.2;
|
||||
x = randn(n, 1);
|
||||
y = randn(n, 1) + a*x;
|
||||
\end{verbatim}
|
||||
\part Erstelle einen Scatterplot der beiden Variablen.
|
||||
\part Warum ist $y$ mit $x$ korreliert?
|
||||
\part Berechne den Korrelationskoeffizienten zwischen $x$ und $y$.
|
||||
\part Was m\"usste man tun, um die Korrelationen zwischen den $x$-$y$
|
||||
Paaren zu zerst\"oren?
|
||||
\part Mach genau dies 1000 mal und berechne jedes Mal den Korrelationskoeffizienten.
|
||||
\part Bestimme die Wahrscheinlichkeitsdichte dieser Korrelationskoeffizienten.
|
||||
\part Ist die Korrelation der urspr\"unglichen Daten signifikant?
|
||||
\part Variiere die Stichprobengr\"o{\ss}e \code{n} und \"uberpr\"ufe
|
||||
auf gleiche Weise die Signifikanz.
|
||||
\part Generate a scatter plot of the two variables.
|
||||
\part Why is $y$ correlated with $x$?
|
||||
\part Compute the correlation coefficient between $x$ and $y$.
|
||||
\part What do you need to do in order to destroy the correlations between the $x$-$y$ pairs?
|
||||
\part Do exactly this 1000 times and compute each time the correlation coefficient.
|
||||
\part Compute the probability density of these correlation coefficients.
|
||||
\part Is the correlation of the original data set significant?
|
||||
\part What does significance of the correlation mean?
|
||||
\part Vary the sample size \code{n} and compute in the same way the
|
||||
significance of the correlation.
|
||||
\end{parts}
|
||||
\begin{solution}
|
||||
\lstinputlisting{correlationsignificance.m}
|
||||
|
@ -1,6 +1,6 @@
|
||||
\vspace*{-6.5ex}
|
||||
\vspace*{-7.8ex}
|
||||
\begin{center}
|
||||
\textbf{\Large Einf\"uhrung in die wissenschaftliche Datenverarbeitung}\\[1ex]
|
||||
\textbf{\Large Introduction to Scientific Computing}\\[2.3ex]
|
||||
{\large Jan Grewe, Jan Benda}\\[-3ex]
|
||||
Abteilung Neuroethologie \hfill --- \hfill Institut f\"ur Neurobiologie \hfill --- \hfill \includegraphics[width=0.28\textwidth]{UT_WBMW_Black_RGB} \\
|
||||
Neuroethology Lab \hfill --- \hfill Institute for Neurobiology \hfill --- \hfill \includegraphics[width=0.28\textwidth]{UT_WBMW_Black_RGB} \\
|
||||
\end{center}
|
||||
|
Reference in New Issue
Block a user