[exercises] matric exerciese translated
This commit is contained in:
parent
b2aa5335b3
commit
99fac2be07
@ -14,7 +14,7 @@
|
||||
%%%%% text size %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\usepackage[left=20mm,right=20mm,top=25mm,bottom=25mm]{geometry}
|
||||
\pagestyle{headandfoot}
|
||||
\header{{\bfseries\large Exercise 3}}{{\bfseries\large Matrices}}{{\bfseries\large 17. Oktober, 2017}}
|
||||
\header{{\bfseries\large Exercise 3}}{{\bfseries\large Matrices}}{{\bfseries\large 23. Oktober, 2017}}
|
||||
\firstpagefooter{Dr. Jan Grewe}{Phone: 29 74588}{Email:
|
||||
jan.grewe@uni-tuebingen.de}
|
||||
\runningfooter{}{\thepage}{}
|
||||
@ -46,95 +46,91 @@ executable on its own. The file should be named according to the following patte
|
||||
|
||||
\begin{questions}
|
||||
|
||||
\question Erstelle folgende Matrix
|
||||
\question Create the following matrix:
|
||||
\[ A = \left( \begin{array}{ccc} 7 & 3 & 5 \\ 1 & 8 & 3 \\ 8 & 6 &
|
||||
4 \end{array} \right) \]
|
||||
\begin{parts}
|
||||
\part Benutze die Funktion \code{size} um die Gr\"o{\ss}e vpm \code{A} anzeeigen zu lassen.
|
||||
\part Use the function \code{size} to check for its size.
|
||||
\begin{solution}
|
||||
\code{x = [7 3 5; 1 8 3; 8 6 4];\\disp(size(x))}
|
||||
\end{solution}
|
||||
\part Finde heraus, wie man \code{size} aufruft um nur die L\"ange entlang einer einzelnen Dimension auszugeben. Gib einzeln die L\"angen beider Dimensionen aus.
|
||||
\part Use the help to figure out how to get only the size along a certain axis. Print the sizes of each dimension.
|
||||
\begin{solution}
|
||||
\code{disp(size(x, 1))}\\\code{disp(size(x, 2))}
|
||||
\end{solution}
|
||||
\part Gib das Element in der 3. Zeile und 2. Spalte aus.
|
||||
\part Retrieve the element at the position 3rd line, 2nd column.
|
||||
\begin{solution}
|
||||
\code{x(3,2)}
|
||||
\end{solution}
|
||||
\part Gib jeweils alle Elemente der 1., 2. und 3. Zeile aus.
|
||||
\part Print all elements of the 1st, 2nd and 3rd line.
|
||||
\begin{solution}
|
||||
\code{disp(x([1 2 3],:));}
|
||||
\end{solution}
|
||||
\part Gib jeweils alle Elemente der 1., 2., und 3. Spalte aus.
|
||||
\part Print all elements of the 1st, 2nd, and 3rd column.
|
||||
\begin{solution}
|
||||
\code{disp(x(:, 1))\\ disp(x(:, 2))\\ disp(x(:, 3))}
|
||||
\end{solution}
|
||||
\part Erh\"ohe das Element in der 2. Zeile und 3. Spalte um Eins.
|
||||
\part Increment all elements of the 2nd line and the 3rd column about 1.
|
||||
\begin{solution}
|
||||
\code{x(2,3) = x(2,3) + 1;}
|
||||
\end{solution}
|
||||
\part Ziehe von allen Elementen der 1. Zeile 5 ab.
|
||||
\part Subtract five from all elements of the 1st line.
|
||||
\begin{solution}
|
||||
\code{x(1,:) = x(1,:) - 5;}
|
||||
\end{solution}
|
||||
\part Multipliziere alle Elementen der 3. Spalte mit 2.
|
||||
\part Multiply all elements of the 3rd column with 2.
|
||||
\begin{solution}
|
||||
\code{x(:,3) = x(:,3) * 2;}
|
||||
\code{x(:,3) = x(:,3) .* 2;}
|
||||
\end{solution}
|
||||
\end{parts}
|
||||
|
||||
\question Erstelle eine $5 \times 5$ Matrix \code{M} die
|
||||
Zufallszahlen enth\"alt (nutze die MATLAB Funktion
|
||||
\verb+randn()+. Benutze die Hilfe: Was macht die Funktion?).
|
||||
\question Create a $5 \times 5$ matrix \code{M} that contains random numbers (use the function
|
||||
\verb+randn()+. Use the help to find out what it does).
|
||||
\begin{parts}
|
||||
\part Gib das Element in der 2. Zeile und 3. Spalte aus.
|
||||
\part Print the element at the position 2nd line and 3rd column.
|
||||
\begin{solution}
|
||||
\code{M = randn(5, 5);}
|
||||
\code{disp(M(2,3))}
|
||||
\end{solution}
|
||||
|
||||
\part Gib jeweils alle Elemente der 1., 3. und letzten Zeile aus.
|
||||
|
||||
\part Print all elements of the 1st, 3rd and last line.
|
||||
\begin{solution}
|
||||
\code{disp(M(1,:)) \\ disp(M(3,:))\\ disp(M(size(M,1), :))}
|
||||
\end{solution}
|
||||
|
||||
\part Gib jeweils alle Elemente der 2. und 4. Spalte aus.
|
||||
\part Print the elements of the 2nd and 4th column.
|
||||
\begin{solution}
|
||||
\code{disp(M(:,2))\\ disp(M(:,4))}
|
||||
\end{solution}
|
||||
|
||||
\part Greife mit einem einzigen Kommando auf die Elemente jeder
|
||||
zweiten Spalte zu und speichere die Daten in einer neuen Variable.
|
||||
\part Select with a single command all elements of every 2nd column and store them in a new variable.
|
||||
\begin{solution}
|
||||
\code{y = M(:, [2:2:size(M,2)])}
|
||||
\end{solution}
|
||||
|
||||
\part Berechne jeweils den Mittelwert der 1., 3. und 5. Zeile
|
||||
(Funktion \code{mean}, siehe Hilfe).
|
||||
\part Calculate the averages of lines 1, 3, and 5 (use the function mean, see help).
|
||||
\begin{solution}
|
||||
\code{mean(M([1 3 5],:), 2)}
|
||||
\end{solution}
|
||||
|
||||
\part Berechne die Summe aller Werte der 2. und 4. Spalte
|
||||
(Funktion \code{sum}, siehe Hilfe).
|
||||
\part Calculate the sum of all elements in the 2nd and 4th column
|
||||
(function \code{sum}, see help).
|
||||
\begin{solution}
|
||||
\code{sum(M(:, [2 4]), 1)}
|
||||
\end{solution}
|
||||
|
||||
\part Berechne die Summe aller Elemente der Matrize.
|
||||
\part Calculate the total sum of all elements in \code{M}
|
||||
\begin{solution}
|
||||
\code{sum(M(:))}
|
||||
\end{solution}
|
||||
|
||||
\part Ersetze die Elemente der 2. Zeile mit denen der 4.
|
||||
\part Exchange all elements of the 2nd with those of the 4th line.
|
||||
\begin{solution}
|
||||
\code{M(2,:) = M(4,:)}
|
||||
\end{solution}
|
||||
|
||||
\part F\"uhre folgendes Kommando aus: \code{M(1:2,1) = [1, 2,
|
||||
3]}. Was k\"onnte die Absicht dieses Codes gewesen sein? Was
|
||||
bedeutet die Fehlermeldung?
|
||||
\part Execute the following command: \code{M(1:2,1) = [1, 2,
|
||||
3]}. What could have been intended by the command and what does the error message tell?
|
||||
\begin{solution}
|
||||
\code{M(1:2,1) = [1, 2,3];\\ Subscripted assignment dimension
|
||||
mismatch.} \\ Der einzuf\"ugende Vektor hat 3 Elemente, die
|
||||
@ -143,30 +139,26 @@ executable on its own. The file should be named according to the following patte
|
||||
\end{solution}
|
||||
\end{parts}
|
||||
|
||||
\question Matrizen k\"onnen neben der ``normalen''
|
||||
\textit{subscript} Indizierung auch \textit{linear} indiziert werden
|
||||
(siehe Hilfe \"uber Indexing oder Funktionen \verb+sub2ind+ oder
|
||||
\verb+ind2sub+).
|
||||
\question Indexing in matrices can use the
|
||||
\textit{subscript} indices or the \textit{linear} indices (you may want to check the help for the \verb+sub2ind+ and \verb+ind2sub+).
|
||||
\begin{parts}
|
||||
\part Erstelle eine 2-D Matrix mit Zufallszahlen mit der Dimensionalit\"at
|
||||
\part Create a 2-D matric filled with random numbers and the dimensionality
|
||||
\verb+[10,10]+.
|
||||
\begin{solution}
|
||||
\code{x = randn(10, 10)}
|
||||
\end{solution}
|
||||
|
||||
\part Wie viele Werte enth\"alt sie?
|
||||
\part How many elements are stored in it?
|
||||
\begin{solution}
|
||||
\code{disp(numel(x))}
|
||||
\end{solution}
|
||||
|
||||
\part Benutze das lineare Indizieren um 50 zuf\"allige Werte
|
||||
auszuw\"ahlen.
|
||||
\part Employ linar indexing to select 50 random values.
|
||||
\begin{solution}
|
||||
\code{x(randi(100, 50, 1)])}
|
||||
\end{solution}
|
||||
|
||||
\part Wo liegt der Vorteil gegen\"uber der \textit{subscript}
|
||||
Indizierung?
|
||||
\part Is there an advantage to use the linear indexing?
|
||||
\begin{solution}
|
||||
Die Matrize ist 2-dimensional. Wenn mit dem subscript index
|
||||
zugegriffen werden soll, dann muss auf die Dimensionen
|
||||
@ -175,66 +167,59 @@ executable on its own. The file should be named according to the following patte
|
||||
eindeutige (ohne doppelte) Auswahl sein soll, dann muss bei
|
||||
2-D viel komplexer kontrollieren.
|
||||
\end{solution}
|
||||
\part Berechne die Summe aller Werte mit einem Funktionsaufruf..
|
||||
|
||||
\part Calculate the total sum of all elements with a single command.
|
||||
\begin{solution}
|
||||
\code{sum(x(:))} oder \code{sum(sum(x))}
|
||||
\code{sum(x(:))} or \code{sum(sum(x))}
|
||||
\end{solution}
|
||||
|
||||
\end{parts}
|
||||
|
||||
\question Erstelle folgende Variablen \verb+x = [1 5 9]+ and
|
||||
\verb+y = [7 1 5]+ und \verb+M = [3 1 6; 5 2 7]+. Welche der
|
||||
folgenden Operationen funktionieren? Wenn nicht, warum funktionieren
|
||||
sie nicht? Teste Deine Vorhersagen.
|
||||
\question Create the three variables \verb+x = [1 5 9]+ and
|
||||
\verb+y = [7 1 5]+ and \verb+M = [3 1 6; 5 2 7]+. Which of the following commands will pass? Which command will not? If not, why? Test your predictions.
|
||||
\begin{parts}
|
||||
\part \code{x + y}
|
||||
\begin{solution}
|
||||
Funktioniert!
|
||||
works!
|
||||
\end{solution}
|
||||
|
||||
\part \code{x * M}
|
||||
\begin{solution}
|
||||
Matrixmultiplikation Funktioniert nicht! Inner dimensions must agree!
|
||||
Matrixmultiplication will not work! Inner dimensions must agree!
|
||||
\end{solution}
|
||||
|
||||
\part \code{x + y'}
|
||||
\begin{solution}
|
||||
Funktioniert nicht! Die Dimensionalit\"aten passen nicht.
|
||||
Fail! Dimensionalities do not match.
|
||||
\end{solution}
|
||||
|
||||
\part \code{M - [x y]}
|
||||
\begin{solution}
|
||||
Funktioniert nicht! \code{[x y] ist ein Zeilenvektor der L\"ange
|
||||
6, M ist eine Martix.}
|
||||
Fail! \code{[x y] is a line vector of length 6, M is a martix.}
|
||||
\end{solution}
|
||||
|
||||
\part \code{[x; y]}
|
||||
\begin{solution}
|
||||
Funktioniert! Gr\"o{\ss}e: 2 3
|
||||
Works! Size: 2 3
|
||||
\end{solution}
|
||||
|
||||
\part \code{M - [x; y]}
|
||||
\begin{solution}
|
||||
Funktioniert!
|
||||
Works!
|
||||
\end{solution}
|
||||
\end{parts}
|
||||
|
||||
\question Erstelle eine 3-D Matrix aus drei 2-D Matrizen. Benutze
|
||||
die \verb+cat()+ Funktion f\"ur diesen Zweck (schaue in der Hilfe
|
||||
nach, wie sie benutzt wird).
|
||||
|
||||
\question Create a 3-D matrix from two 2-D matrices. Use the function cat (check the help to learn its usage).
|
||||
\begin{parts}
|
||||
\part Gib alle Elemente des ersten ``Blattes'' aus (Index 1 der 3. Dimension).
|
||||
\part Select all elements of the first ``page'' (index 1, 3. dimension).
|
||||
\begin{solution}
|
||||
\code{x = randn(5,5); \\y = randn(5, 5);\\ z = cat(3, x, y);\\disp(z(:,:,1))}
|
||||
\end{solution}
|
||||
\end{parts}
|
||||
|
||||
\question Erzeuge eine $5 \times 5 \times 5$ Matrix die mit
|
||||
ganzzahligen, gleichverteilten Zufallszahlen zwischen 0 und 100
|
||||
gef\"ullt ist.
|
||||
|
||||
\question Create a $5 \times 5 \times 5$ matrix of random numbers that have been drawn from a uniform distribution. Values should be in the range 0 and 100.
|
||||
\begin{parts}
|
||||
\part Berechne den Mittelwert aller Bl\"atter dieser Matrix
|
||||
(benutze \verb+mean()+, siehe Hilfe).
|
||||
\part Calculate the average of each ``page'' (function \verb+mean()+, see help).
|
||||
\begin{solution}
|
||||
\code{x = round(rand(5,5,5) .* 100);\\ Disp(mean(mean(x(:,:,1))))\\ disp(mean(mean(x(:,:,2)))) \\ disp(mean(mean(x(:,:,3))))}
|
||||
\end{solution}
|
||||
|
Reference in New Issue
Block a user