Merge branch 'master' of raven.am28.uni-tuebingen.de:scientificComputing
This commit is contained in:
commit
9721f06ec3
@ -8,30 +8,34 @@
|
|||||||
\vspace{.5cm}
|
\vspace{.5cm}
|
||||||
|
|
||||||
The {\bf code} and the {\bf presentation} should be uploaded to
|
The {\bf code} and the {\bf presentation} should be uploaded to
|
||||||
ILIAS before the presentations start on Thursday. Everything
|
ILIAS at latest on Thursday, November 6th, 12:00h.
|
||||||
should be bundeled into a {\em single} zip-file. The
|
The presentations start on Thursday 13:00h. Please hand in
|
||||||
presentation should be handed in as pdf.
|
your presentation as a pdf file. Bundle everything into a
|
||||||
|
{\em single} zip-file.
|
||||||
|
|
||||||
\vspace{.5cm}
|
\vspace{.5cm}
|
||||||
|
|
||||||
The {\bf code} should be exectuable without any further
|
The {\bf code} should be exectuable without any further
|
||||||
adjustments from us. This means that you should include all
|
adjustments from us. This means that you need to include all
|
||||||
additional functions you wrote and the data into the
|
additional functions you wrote and the data into the
|
||||||
zip-file. The {\em main script} should produce the same {\em
|
zip-file. A single {\em main script} should produce the same
|
||||||
figures} that you use in your slides. The figures should follow
|
{\em figures} that you use in your slides. The figures should
|
||||||
the guidelines for proper plotting as discussed in the first
|
follow the guidelines for proper plotting as discussed in the
|
||||||
statistics lecture. The code should be properly commented and
|
first statistics lecture. The code should be properly commented
|
||||||
comprehensible by third persons (use proper and consistent
|
and comprehensible by third persons (use proper and consistent
|
||||||
variable names).
|
variable names).
|
||||||
|
|
||||||
|
\vspace{.5cm} \textbf{Please write your name and matriculation
|
||||||
|
number as a comment at the top of a script called \texttt{main.m}!}
|
||||||
|
The \texttt{main.m} script then should call all your scripts.
|
||||||
|
|
||||||
\vspace{.5cm}
|
\vspace{.5cm}
|
||||||
|
|
||||||
The {\bf slides} should be handed in along with the code and in
|
The {\bf presentation} should be {\em at most} 10min long and be
|
||||||
pdf format. We will store them all on one computer to allow fast
|
held in English. In the presentation you should (i) briefly
|
||||||
transitions between talks. The {\bf presentation} itself should
|
describe the problem, (ii) explain how you solved it
|
||||||
be {\em at most} 10min long and be held in English. In the
|
algorithmically (don't show your entire code), and (iii) present
|
||||||
presentation you should (i) briefly describe the problem, (ii)
|
figures showing your results. We will store all presentations on
|
||||||
explain how you solved it algorithmically (don't show your
|
one computer to allow fast transitions between talks.
|
||||||
entire code), and (iii) present figures showing your results.
|
|
||||||
|
|
||||||
}}
|
}}
|
@ -1,11 +0,0 @@
|
|||||||
latex:
|
|
||||||
pdflatex *.tex > /dev/null
|
|
||||||
pdflatex *.tex > /dev/null
|
|
||||||
pdflatex *.tex > /dev/null
|
|
||||||
|
|
||||||
clean:
|
|
||||||
rm -rf *.log *.aux *.zip *.out auto *.bbl *.blg
|
|
||||||
rm -f `basename *.tex .tex`.pdf
|
|
||||||
|
|
||||||
zip: latex
|
|
||||||
zip `basename *.tex .tex`.zip *.pdf *.jpg
|
|
Binary file not shown.
Before Width: | Height: | Size: 915 KiB |
@ -1,61 +0,0 @@
|
|||||||
\documentclass[addpoints,10pt]{exam}
|
|
||||||
\usepackage{url}
|
|
||||||
\usepackage{color}
|
|
||||||
\usepackage{hyperref}
|
|
||||||
|
|
||||||
\pagestyle{headandfoot}
|
|
||||||
\runningheadrule
|
|
||||||
\firstpageheadrule
|
|
||||||
\firstpageheader{Scientific Computing}{Project Assignment}{11/05/2014
|
|
||||||
-- 11/06/2014}
|
|
||||||
%\runningheader{Homework 01}{Page \thepage\ of \numpages}{23. October 2014}
|
|
||||||
\firstpagefooter{}{}{}
|
|
||||||
\runningfooter{}{}{}
|
|
||||||
\pointsinmargin
|
|
||||||
\bracketedpoints
|
|
||||||
|
|
||||||
%\printanswers
|
|
||||||
%\shadedsolutions
|
|
||||||
|
|
||||||
|
|
||||||
\begin{document}
|
|
||||||
%%%%%%%%%%%%%%%%%%%%% Submission instructions %%%%%%%%%%%%%%%%%%%%%%%%%
|
|
||||||
\sffamily
|
|
||||||
% \begin{flushright}
|
|
||||||
% \gradetable[h][questions]
|
|
||||||
% \end{flushright}
|
|
||||||
|
|
||||||
\begin{center}
|
|
||||||
\input{../disclaimer.tex}
|
|
||||||
\end{center}
|
|
||||||
|
|
||||||
%%%%%%%%%%%%%% Questions %%%%%%%%%%%%%%%%%%%%%%%%%
|
|
||||||
|
|
||||||
In you zip file you find a natural image called {\tt natimg.jpg}.
|
|
||||||
\begin{questions}
|
|
||||||
|
|
||||||
\question Load the image and extract all pixels as three dimensional
|
|
||||||
vectors (red, green, and blue channel).
|
|
||||||
|
|
||||||
\question Perform a principal component analysis on these
|
|
||||||
three-dimensional vectors.
|
|
||||||
|
|
||||||
\question Try to find a interpretation of the principal components
|
|
||||||
you find in terms of colors. Find a good way to visualize this.
|
|
||||||
|
|
||||||
\question What could be the biological significance of that (\cite{BG} can
|
|
||||||
give you a clue)?
|
|
||||||
|
|
||||||
\end{questions}
|
|
||||||
|
|
||||||
\begin{thebibliography}{1}
|
|
||||||
\bibitem{BG} Buchsbaum, G., \& Gottschalk, A. (1983). Trichromacy,
|
|
||||||
opponent colours coding and optimum colour information transmission
|
|
||||||
in the retina. Proceedings of the Royal Society of London. Series B,
|
|
||||||
Containing Papers of a Biological Character. Royal Society (Great
|
|
||||||
Britain), 220(1218), 89–113.
|
|
||||||
\end{thebibliography}
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
\end{document}
|
|
BIN
projects/project_eod/EOD_data.mat
Normal file
BIN
projects/project_eod/EOD_data.mat
Normal file
Binary file not shown.
10
projects/project_eod/Makefile
Normal file
10
projects/project_eod/Makefile
Normal file
@ -0,0 +1,10 @@
|
|||||||
|
latex:
|
||||||
|
pdflatex *.tex > /dev/null
|
||||||
|
pdflatex *.tex > /dev/null
|
||||||
|
|
||||||
|
clean:
|
||||||
|
rm -rf *.log *.aux *.zip *.out auto
|
||||||
|
rm -f `basename *.tex .tex`.pdf
|
||||||
|
|
||||||
|
zip: latex
|
||||||
|
zip `basename *.tex .tex`.zip *.pdf *.dat *.mat
|
61
projects/project_eod/eod.tex
Executable file
61
projects/project_eod/eod.tex
Executable file
@ -0,0 +1,61 @@
|
|||||||
|
\documentclass[addpoints,10pt]{exam}
|
||||||
|
\usepackage{url}
|
||||||
|
\usepackage{color}
|
||||||
|
\usepackage{hyperref}
|
||||||
|
|
||||||
|
\pagestyle{headandfoot}
|
||||||
|
\runningheadrule
|
||||||
|
\firstpageheadrule
|
||||||
|
\firstpageheader{Scientific Computing}{Project Assignment}{11/05/2014
|
||||||
|
-- 11/06/2014}
|
||||||
|
%\runningheader{Homework 01}{Page \thepage\ of \numpages}{23. October 2014}
|
||||||
|
\firstpagefooter{}{}{}
|
||||||
|
\runningfooter{}{}{}
|
||||||
|
\pointsinmargin
|
||||||
|
\bracketedpoints
|
||||||
|
|
||||||
|
%\printanswers
|
||||||
|
%\shadedsolutions
|
||||||
|
|
||||||
|
|
||||||
|
\begin{document}
|
||||||
|
%%%%%%%%%%%%%%%%%%%%% Submission instructions %%%%%%%%%%%%%%%%%%%%%%%%%
|
||||||
|
\sffamily
|
||||||
|
% \begin{flushright}
|
||||||
|
% \gradetable[h][questions]
|
||||||
|
% \end{flushright}
|
||||||
|
|
||||||
|
\begin{center}
|
||||||
|
\input{../disclaimer.tex}
|
||||||
|
\end{center}
|
||||||
|
|
||||||
|
%%%%%%%%%%%%%% Questions %%%%%%%%%%%%%%%%%%%%%%%%%
|
||||||
|
|
||||||
|
\begin{questions}
|
||||||
|
\question In the data file {\tt EOD\_data.mat} you find a time trace
|
||||||
|
and the {\em electric organ discharge (EOD)} of a weakly electric
|
||||||
|
fish {\em Apteronotus leptorhynchus}.
|
||||||
|
\begin{parts}
|
||||||
|
\part Load and plot the data in an appropriate way. Time is in
|
||||||
|
seconds and the voltage is in mV/cm.
|
||||||
|
\part Fit the following curve to the eod (select a smaller time
|
||||||
|
window for fitting, not the entire trace) using least squares:
|
||||||
|
$$f_{\omega_0,b_0,\varphi_1, ...,\varphi_n}(t) = b_0 +
|
||||||
|
\sum_{j=1}^n \sin(2\pi j\omega_0\cdot t + \varphi_j ).$$
|
||||||
|
$\omega_0$ is called {\em fundamental frequency}. The single terms
|
||||||
|
$\sin(2\pi j\omega_0\cdot t + \varphi_j )$ are called {\em
|
||||||
|
harmonic components}. The variables $\varphi_j$ are called {\em
|
||||||
|
phases}. For the beginning choose $n=3$.
|
||||||
|
\part Play around with $n$ and see how the fit changes. Plot the
|
||||||
|
fits and the original curve for different choices of $n$. If you
|
||||||
|
want you can also play the different fits and the original as
|
||||||
|
sound.
|
||||||
|
|
||||||
|
\end{parts}
|
||||||
|
\end{questions}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
\end{document}
|
10
projects/project_fano_test/Makefile
Normal file
10
projects/project_fano_test/Makefile
Normal file
@ -0,0 +1,10 @@
|
|||||||
|
latex:
|
||||||
|
pdflatex *.tex > /dev/null
|
||||||
|
pdflatex *.tex > /dev/null
|
||||||
|
|
||||||
|
clean:
|
||||||
|
rm -rf *.log *.aux *.zip *.out auto
|
||||||
|
rm -f `basename *.tex .tex`.pdf
|
||||||
|
|
||||||
|
zip: latex
|
||||||
|
zip `basename *.tex .tex`.zip *.pdf *.dat *.mat
|
66
projects/project_fano_test/fano.tex
Executable file
66
projects/project_fano_test/fano.tex
Executable file
@ -0,0 +1,66 @@
|
|||||||
|
\documentclass[addpoints,10pt]{exam}
|
||||||
|
\usepackage{url}
|
||||||
|
\usepackage{color}
|
||||||
|
\usepackage{hyperref}
|
||||||
|
|
||||||
|
\pagestyle{headandfoot}
|
||||||
|
\runningheadrule
|
||||||
|
\firstpageheadrule
|
||||||
|
\firstpageheader{Scientific Computing}{Project Assignment}{11/05/2014
|
||||||
|
-- 11/06/2014}
|
||||||
|
%\runningheader{Homework 01}{Page \thepage\ of \numpages}{23. October 2014}
|
||||||
|
\firstpagefooter{}{}{}
|
||||||
|
\runningfooter{}{}{}
|
||||||
|
\pointsinmargin
|
||||||
|
\bracketedpoints
|
||||||
|
|
||||||
|
%\printanswers
|
||||||
|
%\shadedsolutions
|
||||||
|
|
||||||
|
|
||||||
|
\begin{document}
|
||||||
|
%%%%%%%%%%%%%%%%%%%%% Submission instructions %%%%%%%%%%%%%%%%%%%%%%%%%
|
||||||
|
\sffamily
|
||||||
|
% \begin{flushright}
|
||||||
|
% \gradetable[h][questions]
|
||||||
|
% \end{flushright}
|
||||||
|
|
||||||
|
\begin{center}
|
||||||
|
\input{../disclaimer.tex}
|
||||||
|
\end{center}
|
||||||
|
|
||||||
|
%%%%%%%%%%%%%% Questions %%%%%%%%%%%%%%%%%%%%%%%%%
|
||||||
|
|
||||||
|
|
||||||
|
\begin{questions}
|
||||||
|
\question The Fano factor $\frac{\sigma^2}{\mu}$ is a common measure
|
||||||
|
in neural coding because a Poisson process---for which each spike is
|
||||||
|
independent of every other---has a Fano factor of one.
|
||||||
|
|
||||||
|
The table contains spike counts from a neuron measured in twelve
|
||||||
|
trials.
|
||||||
|
|
||||||
|
\begin{center}
|
||||||
|
\begin{tabular}{cccc}
|
||||||
|
\multicolumn{4}{c}{\bf number of spikes} \\ \hline\\
|
||||||
|
36.00 & 28.00 & 38.00 & 35.00\\
|
||||||
|
32.00 & 30.00 & 35.00 & 29.00\\
|
||||||
|
29.00 & 24.00 & 26.00 & 34.00
|
||||||
|
\end{tabular}
|
||||||
|
\end{center}
|
||||||
|
|
||||||
|
\begin{parts}
|
||||||
|
\part Use {\em Eden, U. T., \& Kramer, M. (2010). Drawing
|
||||||
|
inferences from Fano factor calculations. Journal of
|
||||||
|
neuroscience methods, 190(1), 149--152} to construct a test that
|
||||||
|
uses the Fano factor as test statistic and tests against the Null
|
||||||
|
hypothesis that the spike counts come from a Poisson process.
|
||||||
|
\part Plot the spike counts appropriately.
|
||||||
|
\part Implement the test and use that it on the data above.
|
||||||
|
\end{parts}
|
||||||
|
|
||||||
|
\end{questions}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
\end{document}
|
10
projects/project_mutualinfo/Makefile
Normal file
10
projects/project_mutualinfo/Makefile
Normal file
@ -0,0 +1,10 @@
|
|||||||
|
latex:
|
||||||
|
pdflatex *.tex > /dev/null
|
||||||
|
pdflatex *.tex > /dev/null
|
||||||
|
|
||||||
|
clean:
|
||||||
|
rm -rf *.log *.aux *.zip *.out auto
|
||||||
|
rm -f `basename *.tex .tex`.pdf
|
||||||
|
|
||||||
|
zip: latex
|
||||||
|
zip `basename *.tex .tex`.zip *.pdf *.dat *.mat
|
BIN
projects/project_mutualinfo/decisions.mat
Normal file
BIN
projects/project_mutualinfo/decisions.mat
Normal file
Binary file not shown.
66
projects/project_mutualinfo/mutualinfo.tex
Executable file
66
projects/project_mutualinfo/mutualinfo.tex
Executable file
@ -0,0 +1,66 @@
|
|||||||
|
\documentclass[addpoints,10pt]{exam}
|
||||||
|
\usepackage{url}
|
||||||
|
\usepackage{color}
|
||||||
|
\usepackage{hyperref}
|
||||||
|
|
||||||
|
\pagestyle{headandfoot}
|
||||||
|
\runningheadrule
|
||||||
|
\firstpageheadrule
|
||||||
|
\firstpageheader{Scientific Computing}{Project Assignment}{11/05/2014
|
||||||
|
-- 11/06/2014}
|
||||||
|
%\runningheader{Homework 01}{Page \thepage\ of \numpages}{23. October 2014}
|
||||||
|
\firstpagefooter{}{}{}
|
||||||
|
\runningfooter{}{}{}
|
||||||
|
\pointsinmargin
|
||||||
|
\bracketedpoints
|
||||||
|
|
||||||
|
%\printanswers
|
||||||
|
%\shadedsolutions
|
||||||
|
|
||||||
|
|
||||||
|
\begin{document}
|
||||||
|
%%%%%%%%%%%%%%%%%%%%% Submission instructions %%%%%%%%%%%%%%%%%%%%%%%%%
|
||||||
|
\sffamily
|
||||||
|
% \begin{flushright}
|
||||||
|
% \gradetable[h][questions]
|
||||||
|
% \end{flushright}
|
||||||
|
|
||||||
|
\begin{center}
|
||||||
|
\input{../disclaimer.tex}
|
||||||
|
\end{center}
|
||||||
|
|
||||||
|
%%%%%%%%%%%%%% Questions %%%%%%%%%%%%%%%%%%%%%%%%%
|
||||||
|
|
||||||
|
\begin{questions}
|
||||||
|
\question A subject was presented two possible objects for a very
|
||||||
|
brief time ($50$ms). The task of the subject was to report which of
|
||||||
|
the two objects was shown. In {\tt decisions.mat} you find an array
|
||||||
|
that stores which object was presented in each trial and which
|
||||||
|
object was reported by the subject.
|
||||||
|
|
||||||
|
\begin{parts}
|
||||||
|
\part Plot the data appropriately.
|
||||||
|
\part Compute a 2-d histogram that shows how often different
|
||||||
|
combinations of reported and presented came up.
|
||||||
|
\part Normalize the histogram such that it sums to one (i.e. make
|
||||||
|
it a probability distribution $P(x,y)$ where $x$ is the presented
|
||||||
|
object and $y$ is the reported object). Compute the probability
|
||||||
|
distributions $P(x)$ and $P(y)$ in the same way.
|
||||||
|
\part Use that probability distribution to compute the mutual
|
||||||
|
information $$I[x:y] = \sum_{x\in\{1,2\}}\sum_{y\in\{1,2\}} P(x,y)
|
||||||
|
\log_2\frac{P(x,y)}{P(x)P(y)}$$ that the answers provide about the
|
||||||
|
actually presented object.
|
||||||
|
\part What is the maximally achievable mutual information (try to
|
||||||
|
find out by generating your own dataset; the situation in which
|
||||||
|
the information is maximal is pretty straightforward)?
|
||||||
|
\part Use bootstrapping to compute the $95\%$ confidence interval
|
||||||
|
for the mutual information estimate in that dataset.
|
||||||
|
\end{parts}
|
||||||
|
|
||||||
|
\end{questions}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
\end{document}
|
10
projects/project_q-values/Makefile
Normal file
10
projects/project_q-values/Makefile
Normal file
@ -0,0 +1,10 @@
|
|||||||
|
latex:
|
||||||
|
pdflatex *.tex > /dev/null
|
||||||
|
pdflatex *.tex > /dev/null
|
||||||
|
|
||||||
|
clean:
|
||||||
|
rm -rf *.log *.aux *.zip *.out auto
|
||||||
|
rm -f `basename *.tex .tex`.pdf
|
||||||
|
|
||||||
|
zip: latex
|
||||||
|
zip `basename *.tex .tex`.zip *.pdf *.dat *.mat
|
1352
projects/project_q-values/p_values.dat
Normal file
1352
projects/project_q-values/p_values.dat
Normal file
File diff suppressed because it is too large
Load Diff
81
projects/project_q-values/qvalues.tex
Executable file
81
projects/project_q-values/qvalues.tex
Executable file
@ -0,0 +1,81 @@
|
|||||||
|
\documentclass[addpoints,10pt]{exam}
|
||||||
|
\usepackage{url}
|
||||||
|
\usepackage{color}
|
||||||
|
\usepackage{hyperref}
|
||||||
|
|
||||||
|
\pagestyle{headandfoot}
|
||||||
|
\runningheadrule
|
||||||
|
\firstpageheadrule
|
||||||
|
\firstpageheader{Scientific Computing}{Project Assignment}{11/05/2014
|
||||||
|
-- 11/06/2014}
|
||||||
|
%\runningheader{Homework 01}{Page \thepage\ of \numpages}{23. October 2014}
|
||||||
|
\firstpagefooter{}{}{}
|
||||||
|
\runningfooter{}{}{}
|
||||||
|
\pointsinmargin
|
||||||
|
\bracketedpoints
|
||||||
|
|
||||||
|
%\printanswers
|
||||||
|
%\shadedsolutions
|
||||||
|
|
||||||
|
|
||||||
|
\begin{document}
|
||||||
|
%%%%%%%%%%%%%%%%%%%%% Submission instructions %%%%%%%%%%%%%%%%%%%%%%%%%
|
||||||
|
\sffamily
|
||||||
|
% \begin{flushright}
|
||||||
|
% \gradetable[h][questions]
|
||||||
|
% \end{flushright}
|
||||||
|
|
||||||
|
\begin{center}
|
||||||
|
\input{../disclaimer.tex}
|
||||||
|
\end{center}
|
||||||
|
|
||||||
|
%%%%%%%%%%%%%% Questions %%%%%%%%%%%%%%%%%%%%%%%%%
|
||||||
|
|
||||||
|
\begin{questions}
|
||||||
|
\question The p-value corresponds to the probability
|
||||||
|
$$P(\mbox{result seems significant}| H_0 \mbox{is true}).$$
|
||||||
|
This means that if your significance threshold is $\alpha=0.05$ and
|
||||||
|
you accept all test with $p \le \alpha$ as significant, then $5\%$
|
||||||
|
of all cases in which $H_0$ was true (there was no effect) your test
|
||||||
|
will appear significant (false positive).
|
||||||
|
|
||||||
|
The problem with that is that you do not know for how many of the
|
||||||
|
tests $H_0$ is actually true. What you really would like to know is:
|
||||||
|
From all those tests that came out significant ($p\le\alpha$) how
|
||||||
|
many of them are false positives? This probability corresponds to
|
||||||
|
$$P(H_0 \mbox{is true}|\mbox{result seems significant})$$ and is
|
||||||
|
called {\em false discovery rate}. In general you cannot compute
|
||||||
|
it. However, if you have many p-values, then you can actually
|
||||||
|
estimate it. The corresponding ``p-value'' for the false discovery
|
||||||
|
rate is called ``q-value''.
|
||||||
|
|
||||||
|
In the paper
|
||||||
|
|
||||||
|
{\em Storey, J. D., \& Tibshirani, R. (2003). Statistical
|
||||||
|
significance for genomewide studies. Proceedings of the National
|
||||||
|
Academy of Sciences of the United States of America, 100,
|
||||||
|
9440–9445. doi:10.1073/pnas.1530509100}
|
||||||
|
|
||||||
|
you can find an algorithm how to compute q-values from p-values.
|
||||||
|
|
||||||
|
The attached data file {\tt p\_values.dat} contains p-values from
|
||||||
|
test of several neurons whether they respond to a certain stimulus
|
||||||
|
condition or not.
|
||||||
|
|
||||||
|
\begin{parts}
|
||||||
|
\part Plot a histogram of the p-values.
|
||||||
|
\part Read and understand the paper by Storey and
|
||||||
|
Tibshirani. Visualize their method at your histogram.
|
||||||
|
\part Implement their method and convert each p-value to a
|
||||||
|
q-value.
|
||||||
|
\part From running the script, estimate the proportion of neurons
|
||||||
|
that show a true effect (i.e. $P(H_A)$).
|
||||||
|
\end{parts}
|
||||||
|
|
||||||
|
\end{questions}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
\end{document}
|
@ -3,7 +3,7 @@ latex:
|
|||||||
pdflatex *.tex > /dev/null
|
pdflatex *.tex > /dev/null
|
||||||
|
|
||||||
clean:
|
clean:
|
||||||
rm -f *.log *.aux *.zip *.out auto
|
rm -rf *.log *.aux *.zip *.out auto
|
||||||
rm -f `basename *.tex .tex`.pdf
|
rm -f `basename *.tex .tex`.pdf
|
||||||
|
|
||||||
zip: latex
|
zip: latex
|
||||||
|
Reference in New Issue
Block a user