Merge branch 'master' of raven.am28.uni-tuebingen.de:scientificComputing
This commit is contained in:
commit
91f1f3663e
@ -163,9 +163,9 @@
|
||||
numbers=left,
|
||||
showstringspaces=false,
|
||||
language=Matlab,
|
||||
commentstyle=\itshape\color{darkgray},
|
||||
keywordstyle=\color{blue},
|
||||
stringstyle=\color{green},
|
||||
commentstyle=\itshape\color{red!60!black},
|
||||
keywordstyle=\color{blue!50!black},
|
||||
stringstyle=\color{green!50!black},
|
||||
backgroundcolor=\color{blue!10},
|
||||
breaklines=true,
|
||||
breakautoindent=true,
|
||||
|
@ -163,9 +163,9 @@
|
||||
numbers=left,
|
||||
showstringspaces=false,
|
||||
language=Matlab,
|
||||
commentstyle=\itshape\color{darkgray},
|
||||
keywordstyle=\color{blue},
|
||||
stringstyle=\color{green},
|
||||
commentstyle=\itshape\color{red!60!black},
|
||||
keywordstyle=\color{blue!50!black},
|
||||
stringstyle=\color{green!50!black},
|
||||
backgroundcolor=\color{blue!10},
|
||||
breaklines=true,
|
||||
breakautoindent=true,
|
||||
|
@ -62,7 +62,7 @@ sigma = 2.3;
|
||||
y = randn(100, 1)*sigma + mu;
|
||||
\end{lstlisting}
|
||||
|
||||
Das ist manchmal auch sinnvoll f\"ur \code{zeros} oder \code{ones}:
|
||||
Das gleiche Prinzip ist manchmal auch sinnvoll f\"ur \code{zeros} oder \code{ones}:
|
||||
\begin{lstlisting}
|
||||
x = -1:0.01:2; % Vektor mit x-Werten
|
||||
plot(x, exp(-x.*x));
|
||||
@ -75,11 +75,14 @@ plot(x, ones(size(x))*0.5);
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\section{for Schleifen \"uber Vektoren}
|
||||
Manchmal m\"ochte man doch mit einer for-Schleife \"uber einen Vektor iterieren:
|
||||
Manchmal m\"ochte man doch mit einer for-Schleife \"uber einen Vektor iterieren.
|
||||
\begin{lstlisting}
|
||||
x = [2:3:20]; % irgendein Vektor
|
||||
for i=1:length(x)
|
||||
% Benutze den Wert des Vektors x an der Stelle des Indexes i:
|
||||
for i=1:length(x) % Mit der for-Schleife "loopen" wir ueber den Vektor
|
||||
i % das ist der Index der die Elemente des Vektors nacheinander indiziert.
|
||||
x(i) % das ist der Wert des i-ten Elements des Vektors x.
|
||||
a = x(i); % die Variable a bekommt den Wert des i-ten Elements des Vektors x zugewiesen.
|
||||
% Benutze den Wert:
|
||||
do_something( x(i) );
|
||||
end
|
||||
\end{lstlisting}
|
||||
@ -89,7 +92,7 @@ sollten wir uns vor der Schleife schon einen Vektor f\"ur die Ergebnisse
|
||||
erstellen:
|
||||
\begin{lstlisting}
|
||||
x = [2:3:20]; % irgendein Vektor
|
||||
y = zeros(size(x)); % Platz fuer die Ergebnisse
|
||||
y = zeros(length(x),1); % Platz fuer die Ergebnisse, genauso viele wie Loops der Schleife
|
||||
for i=1:length(x)
|
||||
% Schreibe den Rueckgabewert der Funktion get_something an die i-te
|
||||
% Stelle von y:
|
||||
@ -125,7 +128,8 @@ for i=1:length(x)
|
||||
% Die Funktion get_something gibt uns einen Vektor zurueck:
|
||||
z = get_something( x(i) );
|
||||
% dessen Inhalt h\"angen wir an unseren Ergebnissvektor an:
|
||||
y = [y z(:)];
|
||||
y = [y; z(:)];
|
||||
% z(:) stellt sicher, das wir auf jeden Fall einen Spaltenvektoren aneinanderreihen.
|
||||
end
|
||||
% jetzt koennen wir dem Ergebnisvektor weiter bearbeiten:
|
||||
mean(y)
|
||||
|
@ -163,9 +163,9 @@
|
||||
numbers=left,
|
||||
showstringspaces=false,
|
||||
language=Matlab,
|
||||
commentstyle=\itshape\color{darkgray},
|
||||
keywordstyle=\color{blue},
|
||||
stringstyle=\color{green},
|
||||
commentstyle=\itshape\color{red!60!black},
|
||||
keywordstyle=\color{blue!50!black},
|
||||
stringstyle=\color{green!50!black},
|
||||
backgroundcolor=\color{blue!10},
|
||||
breaklines=true,
|
||||
breakautoindent=true,
|
||||
|
@ -1,24 +1,36 @@
|
||||
function [counts, bins] = counthist(spikes, w)
|
||||
% computes count histogram and compare them with Poisson distribution
|
||||
% spikes: a cell array of vectors of spike times
|
||||
% w: observation window duration for computing the counts
|
||||
%
|
||||
% [counts, bins] = counthist(spikes, w)
|
||||
% spikes: a cell array of vectors of spike times in seconds
|
||||
% w: observation window duration in seconds for computing the counts
|
||||
% counts: the histogram of counts normalized to probabilities
|
||||
% bins: the bin centers for the histogram
|
||||
|
||||
% collect spike counts:
|
||||
tmax = spikes{1}(end);
|
||||
n = [];
|
||||
r = [];
|
||||
for k = 1:length(spikes)
|
||||
for tk = 0:w:tmax-w
|
||||
nn = sum( ( spikes{k} >= tk ) & ( spikes{k} < tk+w ) );
|
||||
%nn = length( find( ( spikes{k} >= tk ) & ( spikes{k} < tk+w ) ) );
|
||||
times = spikes{k};
|
||||
% alternative 1: count the number of spikes in each window:
|
||||
% for tk = 0:w:tmax-w
|
||||
% nn = sum( ( times >= tk ) & ( times < tk+w ) );
|
||||
% %nn = length( find( ( times >= tk ) & ( times < tk+w ) ) );
|
||||
% n = [ n nn ];
|
||||
% end
|
||||
% alternative 2: use the hist function to do that!
|
||||
tbins = 0.5*w:w:tmax-0.5*w;
|
||||
nn = hist(times, tbins);
|
||||
n = [ n nn ];
|
||||
end
|
||||
rate = (length(spikes{k})-1)/(spikes{k}(end) - spikes{k}(1));
|
||||
% the rate of the spikes:
|
||||
rate = (length(times)-1)/(times(end) - times(1));
|
||||
r = [ r rate ];
|
||||
end
|
||||
% histogram of spike counts:
|
||||
maxn = max( n );
|
||||
[counts, bins ] = hist( n, 0:1:maxn+10 );
|
||||
% normalize to probabilities:
|
||||
counts = counts / sum( counts );
|
||||
if nargout == 0
|
||||
bar( bins, counts );
|
||||
@ -26,12 +38,11 @@ function [counts, bins] = counthist(spikes, w)
|
||||
% Poisson distribution:
|
||||
rate = mean( r );
|
||||
x = 0:1:maxn+10;
|
||||
l = rate*w;
|
||||
y = l.^x.*exp(-l)./factorial(x);
|
||||
a = rate*w;
|
||||
y = a.^x.*exp(-a)./factorial(x);
|
||||
plot( x, y, 'r', 'LineWidth', 3 );
|
||||
hold off;
|
||||
xlabel( 'counts k' );
|
||||
ylabel( 'P(k)' );
|
||||
end
|
||||
end
|
||||
|
||||
|
@ -1,7 +1,9 @@
|
||||
function isihist( isis, binwidth )
|
||||
% plot histogram of isis
|
||||
% isis: vector of interspike intervals
|
||||
% binwidth: optional width to be used for the isi bins
|
||||
% plot histogram of interspike intervals
|
||||
%
|
||||
% isihist(isis, binwidth)
|
||||
% isis: vector of interspike intervals in seconds
|
||||
% binwidth: optional width in seconds to be used for the isi bins
|
||||
|
||||
if nargin < 2
|
||||
nperbin = 200; % average number of data points per bin
|
||||
|
@ -1,15 +1,16 @@
|
||||
function isivec = isis( spikes )
|
||||
% returns a single list of isis computed from all trials in spikes
|
||||
% spikes: a cell array of vectors of spike times
|
||||
%
|
||||
% isivec = isis( spikes )
|
||||
% spikes: a cell array of vectors of spike times in seconds
|
||||
% isivec: a column vector with all the interspike intervalls
|
||||
|
||||
isivec = [];
|
||||
for k = 1:length(spikes)
|
||||
difftimes = diff( spikes{k} );
|
||||
if ( size( difftimes, 1 ) == 1 )
|
||||
isivec = [ isivec difftimes ];
|
||||
elseif ( size( difftimes, 2 ) == 1 )
|
||||
isivec = [ isivec difftimes' ];
|
||||
end
|
||||
% difftimes(:) ensures a column vector
|
||||
% regardless of the type of vector spikes{k}
|
||||
isivec = [ isivec; difftimes(:) ];
|
||||
end
|
||||
end
|
||||
|
||||
|
@ -1,15 +1,19 @@
|
||||
function isicorr = isiserialcorr( isis, maxlag )
|
||||
% serial correlation of isis
|
||||
% isis: vector of interspike intervals
|
||||
% maxlag: the maximum lag
|
||||
% serial correlation of interspike intervals
|
||||
%
|
||||
% isicorr = isiserialcorr( isis, maxlag )
|
||||
% isis: vector of interspike intervals in seconds
|
||||
% maxlag: the maximum lag in seconds
|
||||
% isicorr: vector with the serial correlations for lag 0 to maxlag
|
||||
|
||||
lags = 0:maxlag;
|
||||
isicorr = zeros( size( lags ) );
|
||||
for k = 1:length(lags)
|
||||
lag = lags(k);
|
||||
if length( isis ) > lag+10
|
||||
cc = corrcoef( [ isis(1:end-lag)', isis(1+lag:end)' ] );
|
||||
isicorr(k) = cc( 1, 2 );
|
||||
if length( isis ) > lag+10 % ensure "enough" data
|
||||
% DANGER: the arguments to corr must be column vectors!
|
||||
% We insure this in the isis() function that generats the isis.
|
||||
isicorr(k) = corr( isis(1:end-lag), isis(lag+1:end) );
|
||||
end
|
||||
end
|
||||
|
||||
|
100
pointprocesses/code/plotspikestats.m
Normal file
100
pointprocesses/code/plotspikestats.m
Normal file
@ -0,0 +1,100 @@
|
||||
%% load data:
|
||||
clear all
|
||||
% alternative 1:
|
||||
% pro: no structs. contra: global unknown variables
|
||||
load poisson.mat
|
||||
whos
|
||||
poissonspikes = spikes;
|
||||
load pifou.mat;
|
||||
pifouspikes = spikes;
|
||||
load lifadapt.mat;
|
||||
lifadaptspikes = spikes;
|
||||
clear spikes;
|
||||
% alternative 2:
|
||||
% pro: clean code. contra: structs that we do not really know yet
|
||||
clear all
|
||||
x = load( 'poisson.mat' );
|
||||
poissonspikes = x.spikes;
|
||||
x = load( 'pifou.mat' );
|
||||
pifouspikes = x.spikes;
|
||||
x = load( 'lifadapt.mat' );
|
||||
lifadaptspikes = x.spikes;
|
||||
|
||||
%% spike raster plots:
|
||||
tmax = 1.0;
|
||||
subplot(1, 3, 1);
|
||||
spikeraster(poissonspikes, tmax);
|
||||
title('Poisson');
|
||||
|
||||
subplot(1, 3, 2);
|
||||
spikeraster(pifouspikes, tmax);
|
||||
title('PIF OU');
|
||||
|
||||
subplot(1, 3, 3);
|
||||
spikeraster(lifadaptspikes, tmax);
|
||||
title('LIF adapt');
|
||||
|
||||
%% isi histograms:
|
||||
maxisi = 300.0;
|
||||
binwidth = 0.002;
|
||||
subplot(1, 3, 1);
|
||||
poissonisis = isis(poissonspikes);
|
||||
isihist(poissonisis, binwidth);
|
||||
xlim([0, maxisi])
|
||||
title('Poisson');
|
||||
|
||||
subplot(1, 3, 2);
|
||||
pifouisis = isis(pifouspikes);
|
||||
isihist(pifouisis, binwidth);
|
||||
xlim([0, maxisi])
|
||||
title('PIF OU');
|
||||
|
||||
subplot(1, 3, 3);
|
||||
lifadaptisis = isis(lifadaptspikes);
|
||||
isihist(lifadaptisis, binwidth);
|
||||
xlim([0, maxisi])
|
||||
title('LIF adapt');
|
||||
|
||||
%% serial correlations:
|
||||
maxlag = 10;
|
||||
rrange = [-0.5, 1.05];
|
||||
subplot(1, 3, 1);
|
||||
isiserialcorr(poissonisis, maxlag);
|
||||
ylim(rrange)
|
||||
title('Poisson');
|
||||
|
||||
subplot(1, 3, 2);
|
||||
isiserialcorr(pifouisis, maxlag);
|
||||
ylim(rrange)
|
||||
title('PIF OU');
|
||||
|
||||
subplot(1, 3, 3);
|
||||
isiserialcorr(lifadaptisis, maxlag);
|
||||
ylim(rrange)
|
||||
title('LIF adapt');
|
||||
|
||||
%% spike counts:
|
||||
w = 0.1;
|
||||
cmax = 8;
|
||||
pmax = 0.5;
|
||||
subplot(1, 3, 1);
|
||||
counthist(poissonspikes, w);
|
||||
xlim([0 cmax])
|
||||
set(gca, 'XTick', 0:2:cmax)
|
||||
ylim([0 pmax])
|
||||
title('Poisson');
|
||||
|
||||
subplot(1, 3, 2);
|
||||
counthist(pifouspikes, w);
|
||||
xlim([0 cmax])
|
||||
set(gca, 'XTick', 0:2:cmax)
|
||||
ylim([0 pmax])
|
||||
title('PIF OU');
|
||||
|
||||
subplot(1, 3, 3);
|
||||
counthist(lifadaptspikes, w);
|
||||
xlim([0 cmax])
|
||||
set(gca, 'XTick', 0:2:cmax)
|
||||
ylim([0 pmax])
|
||||
title('LIF adapt');
|
||||
savefigpdf(gcf, 'counthist.pdf', 20, 7);
|
@ -1,9 +1,11 @@
|
||||
function spikes = poissonspikes( trials, rate, tmax )
|
||||
% Generate spike times of a homogeneous poisson process
|
||||
%
|
||||
% spikes = poissonspikes( trials, rate, tmax )
|
||||
% trials: number of trials that should be generated
|
||||
% rate: the rate of the Poisson process in Hertz
|
||||
% tmax: the duration of each trial in seconds
|
||||
% returns a cell array of vectors of spike times
|
||||
% spikes: a cell array of vectors of spike times in seconds
|
||||
|
||||
dt = 3.33e-5;
|
||||
p = rate*dt; % probability of event per bin of width dt
|
||||
|
@ -1,6 +1,8 @@
|
||||
function spikeraster(spikes, tmax)
|
||||
% Display a spike raster of the spike times given in spikes.
|
||||
% spikes: a cell array of vectors of spike times
|
||||
%
|
||||
% spikeraster(spikes, tmax)
|
||||
% spikes: a cell array of vectors of spike times in seconds
|
||||
% tmax: plot spike raster upto tmax seconds
|
||||
|
||||
ntrials = length(spikes);
|
||||
@ -16,8 +18,10 @@ for k = 1:ntrials
|
||||
end
|
||||
if tmax < 1.5
|
||||
xlabel( 'Time [ms]' );
|
||||
xlim([0.0 1000.0*tmax]);
|
||||
else
|
||||
xlabel( 'Time [s]' );
|
||||
xlim([0.0 tmax]);
|
||||
end
|
||||
ylabel( 'Trials');
|
||||
ylim( [ 0.3 ntrials+0.7 ] )
|
||||
|
@ -163,9 +163,9 @@
|
||||
numbers=left,
|
||||
showstringspaces=false,
|
||||
language=Matlab,
|
||||
commentstyle=\itshape\color{darkgray},
|
||||
keywordstyle=\color{blue},
|
||||
stringstyle=\color{green},
|
||||
commentstyle=\itshape\color{red!60!black},
|
||||
keywordstyle=\color{blue!50!black},
|
||||
stringstyle=\color{green!50!black},
|
||||
backgroundcolor=\color{blue!10},
|
||||
breaklines=true,
|
||||
breakautoindent=true,
|
||||
|
@ -163,9 +163,9 @@
|
||||
numbers=left,
|
||||
showstringspaces=false,
|
||||
language=Matlab,
|
||||
commentstyle=\itshape\color{darkgray},
|
||||
keywordstyle=\color{blue},
|
||||
stringstyle=\color{green},
|
||||
commentstyle=\itshape\color{red!60!black},
|
||||
keywordstyle=\color{blue!50!black},
|
||||
stringstyle=\color{green!50!black},
|
||||
backgroundcolor=\color{blue!10},
|
||||
breaklines=true,
|
||||
breakautoindent=true,
|
||||
|
@ -2,8 +2,9 @@ import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
# roll the die:
|
||||
x1 = np.random.random_integers( 1, 6, 100 )
|
||||
x2 = np.random.random_integers( 1, 6, 500 )
|
||||
rng = np.random.RandomState(57281)
|
||||
x1 = rng.random_integers( 1, 6, 100 )
|
||||
x2 = rng.random_integers( 1, 6, 500 )
|
||||
bins = np.arange(0.5, 7, 1.0)
|
||||
|
||||
plt.xkcd()
|
||||
@ -14,7 +15,10 @@ ax.spines['right'].set_visible(False)
|
||||
ax.spines['top'].set_visible(False)
|
||||
ax.yaxis.set_ticks_position('left')
|
||||
ax.xaxis.set_ticks_position('bottom')
|
||||
ax.set_xlim(0, 7)
|
||||
ax.set_xticks( range(1, 7) )
|
||||
ax.set_xlabel( 'x' )
|
||||
ax.set_ylim(0, 98)
|
||||
ax.set_ylabel( 'Frequency' )
|
||||
ax.hist([x2, x1], bins, color=['#FFCC00', '#FFFF66' ])
|
||||
|
||||
@ -23,9 +27,13 @@ ax.spines['right'].set_visible(False)
|
||||
ax.spines['top'].set_visible(False)
|
||||
ax.yaxis.set_ticks_position('left')
|
||||
ax.xaxis.set_ticks_position('bottom')
|
||||
ax.set_xlim(0, 7)
|
||||
ax.set_xticks( range(1, 7) )
|
||||
ax.set_xlabel( 'x' )
|
||||
ax.set_ylim(0, 0.23)
|
||||
ax.set_ylabel( 'Probability' )
|
||||
ax.hist([x2, x1], bins, normed=True, color=['#FFCC00', '#FFFF66' ])
|
||||
ax.plot([0.2, 6.8], [1.0/6.0, 1.0/6.0], '-r', lw=2, zorder=1)
|
||||
ax.hist([x2, x1], bins, normed=True, color=['#FFCC00', '#FFFF66' ], zorder=10)
|
||||
plt.tight_layout()
|
||||
fig.savefig( 'diehistograms.pdf' )
|
||||
#plt.show()
|
||||
|
@ -2,9 +2,10 @@ import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
# normal distribution:
|
||||
rng = np.random.RandomState(6281)
|
||||
x = np.arange( -4.0, 4.0, 0.01 )
|
||||
g = np.exp(-0.5*x*x)/np.sqrt(2.0*np.pi)
|
||||
r = np.random.randn( 100 )
|
||||
r = rng.randn( 100 )
|
||||
|
||||
plt.xkcd()
|
||||
|
||||
@ -15,9 +16,10 @@ ax.spines['top'].set_visible(False)
|
||||
ax.yaxis.set_ticks_position('left')
|
||||
ax.xaxis.set_ticks_position('bottom')
|
||||
ax.set_xlabel( 'x' )
|
||||
ax.set_xlim(-3.2, 3.2)
|
||||
ax.set_xticks( np.arange( -3.0, 3.1, 1.0 ) )
|
||||
ax.set_ylabel( 'Frequency' )
|
||||
#ax.set_ylim( 0.0, 0.46 )
|
||||
#ax.set_yticks( np.arange( 0.0, 0.45, 0.1 ) )
|
||||
ax.set_yticks( np.arange( 0.0, 41.0, 10.0 ) )
|
||||
ax.hist(r, 5, color='#CC0000')
|
||||
ax.hist(r, 20, color='#FFCC00')
|
||||
|
||||
@ -27,11 +29,14 @@ ax.spines['top'].set_visible(False)
|
||||
ax.yaxis.set_ticks_position('left')
|
||||
ax.xaxis.set_ticks_position('bottom')
|
||||
ax.set_xlabel( 'x' )
|
||||
ax.set_xlim(-3.2, 3.2)
|
||||
ax.set_xticks( np.arange( -3.0, 3.1, 1.0 ) )
|
||||
ax.set_ylabel( 'Probability density p(x)' )
|
||||
#ax.set_ylim( 0.0, 0.46 )
|
||||
#ax.set_yticks( np.arange( 0.0, 0.45, 0.1 ) )
|
||||
ax.hist(r, 5, normed=True, color='#CC0000')
|
||||
ax.hist(r, 20, normed=True, color='#FFCC00')
|
||||
ax.set_ylim(0.0, 0.44)
|
||||
ax.set_yticks( np.arange( 0.0, 0.41, 0.1 ) )
|
||||
ax.plot(x, g, '-b', lw=2, zorder=-1)
|
||||
ax.hist(r, 5, normed=True, color='#CC0000', zorder=-10)
|
||||
ax.hist(r, 20, normed=True, color='#FFCC00', zorder=-5)
|
||||
|
||||
plt.tight_layout()
|
||||
fig.savefig( 'pdfhistogram.pdf' )
|
||||
|
@ -163,9 +163,9 @@
|
||||
numbers=left,
|
||||
showstringspaces=false,
|
||||
language=Matlab,
|
||||
commentstyle=\itshape\color{darkgray},
|
||||
keywordstyle=\color{blue},
|
||||
stringstyle=\color{green},
|
||||
commentstyle=\itshape\color{red!60!black},
|
||||
keywordstyle=\color{blue!50!black},
|
||||
stringstyle=\color{green!50!black},
|
||||
backgroundcolor=\color{blue!10},
|
||||
breaklines=true,
|
||||
breakautoindent=true,
|
||||
|
@ -111,7 +111,8 @@ Wahrscheinlichkeitsverteilung der Messwerte ab.
|
||||
to their sum.}{Histogramme des Ergebnisses von 100 oder 500 mal
|
||||
W\"urfeln. Links: das absolute Histogramm z\"ahlt die Anzahl des
|
||||
Auftretens jeder Augenzahl. Rechts: Normiert auf die Summe des
|
||||
Histogramms werden die beiden Messungen vergleichbar.}}
|
||||
Histogramms werden die beiden Messungen untereinander als auch
|
||||
mit der theoretischen Verteilung $P=1/6$ vergleichbar.}}
|
||||
\end{figure}
|
||||
|
||||
Bei ganzzahligen Messdaten (z.B. die Augenzahl eines W\"urfels)
|
||||
@ -142,7 +143,9 @@ Meistens haben wir es jedoch mit reellen Messgr\"o{\ss}en zu tun.
|
||||
normalverteilten Messwerten. Links: Die H\"ohe des absoluten
|
||||
Histogramms h\"angt von der Klassenbreite ab. Rechts: Bei auf
|
||||
das Integral normierten Histogrammen werden auch
|
||||
unterschiedliche Klassenbreiten vergleichbar.}}
|
||||
unterschiedliche Klassenbreiten untereinander vergleichbar und
|
||||
auch mit der theoretischen Wahrschinlichkeitsdichtefunktion
|
||||
(blau).}}
|
||||
\end{figure}
|
||||
|
||||
Histogramme von reellen Messwerten m\"ussen auf das Integral 1
|
||||
|
Reference in New Issue
Block a user