[pointprocesses] moved exercise codes to exercise folder
This commit is contained in:
parent
2bc8119e2e
commit
84b14d72ac
25
pointprocesses/code/counts.m
Normal file
25
pointprocesses/code/counts.m
Normal file
@ -0,0 +1,25 @@
|
||||
function n = counts(spikes, w)
|
||||
% Count spikes in time windows.
|
||||
%
|
||||
% Arguments:
|
||||
% spikes: a cell array of vectors of spike times in seconds
|
||||
% w: duration of window in seconds for computing the counts
|
||||
%
|
||||
% Returns:
|
||||
% n: vector with spike counts
|
||||
tmax = spikes{1}(end);
|
||||
n = [];
|
||||
for k = 1:length(spikes)
|
||||
times = spikes{k};
|
||||
% alternative 1: count the number of spikes in each window:
|
||||
% for tk = 0:w:tmax-w
|
||||
% nn = sum((times >= tk) & (times < tk+w));
|
||||
% % nn = length(find((times >= tk) & (times < tk+w)));
|
||||
% n = [n, nn];
|
||||
% end
|
||||
% alternative 2: use the hist() function to do that!
|
||||
tbins = 0.5*w:w:tmax-0.5*w;
|
||||
nn = hist(times, tbins);
|
||||
n = [n, nn];
|
||||
end
|
||||
end
|
@ -1,4 +1,4 @@
|
||||
function counthist(spikes, w)
|
||||
function plotcounthist(spikes, w)
|
||||
% Plot histogram of spike counts.
|
||||
%
|
||||
% Arguments:
|
||||
|
@ -1,30 +0,0 @@
|
||||
function counts = spikecounts(spikes, w)
|
||||
% Compute vector of spike counts.
|
||||
%
|
||||
% counts = spikecounts(spikes, w)
|
||||
%
|
||||
% Arguments:
|
||||
% spikes: a cell array of vectors of spike times in seconds
|
||||
% w: observation window duration in seconds for computing the counts
|
||||
%
|
||||
% Returns:
|
||||
% counts: vector of spike counts
|
||||
|
||||
% collect spike counts:
|
||||
tmax = spikes{1}(end);
|
||||
counts = [];
|
||||
for k = 1:length(spikes)
|
||||
times = spikes{k};
|
||||
% method 1: count the number of spikes in each window:
|
||||
% for tk = 0:w:tmax-w
|
||||
% nn = sum((times >= tk) & (times < tk+w));
|
||||
% %nn = length(times((times >= tk) & (times < tk+w)));
|
||||
% %nn = length(find((times >= tk) & (times < tk+w)));
|
||||
% counts = [counts nn];
|
||||
% end
|
||||
% method 2: use the hist() function to do that!
|
||||
tbins = 0.5*w:w:tmax-0.5*w;
|
||||
nn = hist(times, tbins);
|
||||
counts = [counts nn];
|
||||
end
|
||||
end
|
@ -1,17 +0,0 @@
|
||||
w = 0.1;
|
||||
bins = 0.0:1.0:10.0;
|
||||
|
||||
counts{1} = spikecounts(poissonspikes, w);
|
||||
counts{2} = spikecounts(pifouspikes, w);
|
||||
counts{3} = spikecounts(lifadaptspikes, w);
|
||||
titles = {'Poisson', 'PIF OU', 'LIF adapt'};
|
||||
for k = 1:3
|
||||
subplot(1, 3, k);
|
||||
[h, b] = hist(counts{k}, bins);
|
||||
bar(b, h/sum(h));
|
||||
title(titles{k})
|
||||
xlabel('Spike count');
|
||||
xlim([-0.5, 8.5]);
|
||||
ylim([0.0 0.8]);
|
||||
end
|
||||
savefigpdf(gcf, 'spikecountshists.pdf', 20, 7);
|
25
pointprocesses/exercises/counts.m
Normal file
25
pointprocesses/exercises/counts.m
Normal file
@ -0,0 +1,25 @@
|
||||
function n = counts(spikes, w)
|
||||
% Count spikes in time windows.
|
||||
%
|
||||
% Arguments:
|
||||
% spikes: a cell array of vectors of spike times in seconds
|
||||
% w: duration of window in seconds for computing the counts
|
||||
%
|
||||
% Returns:
|
||||
% n: vector with spike counts
|
||||
tmax = spikes{1}(end);
|
||||
n = [];
|
||||
for k = 1:length(spikes)
|
||||
times = spikes{k};
|
||||
% alternative 1: count the number of spikes in each window:
|
||||
% for tk = 0:w:tmax-w
|
||||
% nn = sum((times >= tk) & (times < tk+w));
|
||||
% % nn = length(find((times >= tk) & (times < tk+w)));
|
||||
% n = [n, nn];
|
||||
% end
|
||||
% alternative 2: use the hist() function to do that!
|
||||
tbins = 0.5*w:w:tmax-0.5*w;
|
||||
nn = hist(times, tbins);
|
||||
n = [n, nn];
|
||||
end
|
||||
end
|
32
pointprocesses/exercises/fanoplot.m
Normal file
32
pointprocesses/exercises/fanoplot.m
Normal file
@ -0,0 +1,32 @@
|
||||
function fanoplot(spikes, titles)
|
||||
% Plots fano factor as a function of window size.
|
||||
%
|
||||
% Arguments:
|
||||
% spikes: a cell array of vectors of spike times
|
||||
% titles: string that is used as a title for the plots
|
||||
windows = logspace(-3.0, -0.5, 100);
|
||||
mc = zeros(1, length(windows));
|
||||
vc = zeros(1, length(windows));
|
||||
for j = 1:length(windows)
|
||||
w = windows(j);
|
||||
spikecounts = counts(spikes, w);
|
||||
mc(j) = mean(spikecounts);
|
||||
vc(j) = var(spikecounts);
|
||||
end
|
||||
|
||||
subplot(1, 2, 1);
|
||||
scatter(mc, vc, 'filled');
|
||||
title(titles);
|
||||
xlabel('Mean count');
|
||||
ylabel('Count variance');
|
||||
|
||||
subplot(1, 2, 2);
|
||||
scatter(1000.0*windows, vc ./ mc, 'filled');
|
||||
title(titles);
|
||||
xlabel('Window [ms]');
|
||||
ylabel('Fano factor');
|
||||
xlim(1000.0*[windows(1) windows(end)])
|
||||
ylim([0.0 1.1]);
|
||||
set(gca, 'XScale', 'log');
|
||||
end
|
||||
|
9
pointprocesses/exercises/fanoplots.m
Normal file
9
pointprocesses/exercises/fanoplots.m
Normal file
@ -0,0 +1,9 @@
|
||||
spikes{1} = poissonspikes;
|
||||
spikes{2} = pifouspikes;
|
||||
spikes{3} = lifadaptspikes;
|
||||
idents = {'poisson', 'pifou', 'lifadapt'};
|
||||
for k = 1:3
|
||||
figure(k)
|
||||
fanoplot(spikes{k}, titles{k});
|
||||
savefigpdf(gcf, sprintf('fanoplots%s.pdf', idents{k}), 20, 7);
|
||||
end
|
29
pointprocesses/exercises/isihist.m
Normal file
29
pointprocesses/exercises/isihist.m
Normal file
@ -0,0 +1,29 @@
|
||||
function [pdf, centers] = isihist(isis, binwidth)
|
||||
% Compute normalized histogram of interspike intervals.
|
||||
%
|
||||
% [pdf, centers] = isihist(isis, binwidth)
|
||||
%
|
||||
% Arguments:
|
||||
% isis: vector of interspike intervals in seconds
|
||||
% binwidth: optional width in seconds to be used for the isi bins
|
||||
%
|
||||
% Returns:
|
||||
% pdf: vector with pdf of interspike intervals in Hertz
|
||||
% centers: vector with centers of interspikeintervalls in seconds
|
||||
|
||||
if nargin < 2
|
||||
% compute good binwidth:
|
||||
nperbin = 200; % average number of data points per bin
|
||||
bins = length(isis)/nperbin; % number of bins
|
||||
binwidth = max(isis)/bins;
|
||||
if binwidth < 5e-4 % half a millisecond
|
||||
binwidth = 5e-4;
|
||||
end
|
||||
end
|
||||
bins = 0.5*binwidth:binwidth:max(isis);
|
||||
% histogram data:
|
||||
[nelements, centers] = hist(isis, bins);
|
||||
% normalization (integral = 1):
|
||||
pdf = nelements / sum(nelements) / binwidth;
|
||||
end
|
||||
|
16
pointprocesses/exercises/isis.m
Normal file
16
pointprocesses/exercises/isis.m
Normal file
@ -0,0 +1,16 @@
|
||||
function isivec = isis(spikes)
|
||||
% returns a single list of isis computed from all trials in spikes
|
||||
%
|
||||
% Arguments:
|
||||
% spikes: a cell array of vectors of spike times in seconds
|
||||
%
|
||||
% Returns:
|
||||
% isivec: a column vector with all the interspike intervals
|
||||
isivec = [];
|
||||
for k = 1:length(spikes)
|
||||
difftimes = diff(spikes{k});
|
||||
% difftimes(:) ensures a column vector
|
||||
% regardless of the type of vector in spikes{k}
|
||||
isivec = [isivec; difftimes(:)];
|
||||
end
|
||||
end
|
21
pointprocesses/exercises/isiserialcorr.m
Normal file
21
pointprocesses/exercises/isiserialcorr.m
Normal file
@ -0,0 +1,21 @@
|
||||
function [isicorr, lags] = isiserialcorr(isivec, maxlag)
|
||||
% serial correlation of interspike intervals
|
||||
%
|
||||
% Arguments:
|
||||
% isivec: vector of interspike intervals in seconds
|
||||
% maxlag: the maximum lag
|
||||
%
|
||||
% Returns:
|
||||
% isicorr: vector with the serial correlations for lag 0 to maxlag
|
||||
% lags: vector with the lags corresponding to isicorr
|
||||
lags = 0:maxlag;
|
||||
isicorr = zeros(size(lags));
|
||||
for k = 1:length(lags)
|
||||
lag = lags(k);
|
||||
if length(isivec) > lag+10 % ensure "enough" data
|
||||
% NOTE: the arguments to corr must be column vectors!
|
||||
% We insure this already in the isis() function.
|
||||
isicorr(k) = corr(isivec(1:end-lag), isivec(lag+1:end));
|
||||
end
|
||||
end
|
||||
end
|
31
pointprocesses/exercises/plotisihist.m
Normal file
31
pointprocesses/exercises/plotisihist.m
Normal file
@ -0,0 +1,31 @@
|
||||
function plotisihist(isis, binwidth)
|
||||
% Plot and annotate histogram of interspike intervals.
|
||||
%
|
||||
% plotisihist(isis, binwidth)
|
||||
%
|
||||
% Arguments:
|
||||
% isis: vector of interspike intervals in seconds
|
||||
% binwidth: optional width in seconds to be used for the isi bins
|
||||
|
||||
% compute normalized histogram:
|
||||
if nargin < 2
|
||||
[pdf, centers] = isihist(isis);
|
||||
else
|
||||
[pdf, centers] = isihist(isis, binwidth);
|
||||
end
|
||||
|
||||
% plot:
|
||||
bar(1000.0*centers, pdf); % milliseconds on x-axis
|
||||
xlabel('ISI [ms]')
|
||||
ylabel('p(ISI) [1/s]')
|
||||
% annotation:
|
||||
misi = mean(isis);
|
||||
sdisi = std(isis);
|
||||
text(0.95, 0.8, sprintf('mean=%.1f ms', 1000.0*misi), ...
|
||||
'Units', 'normalized', 'HorizontalAlignment', 'right')
|
||||
text(0.95, 0.7, sprintf('std=%.1f ms', 1000.0*sdisi), ...
|
||||
'Units', 'normalized', 'HorizontalAlignment', 'right')
|
||||
text(0.95, 0.6, sprintf('CV=%.2f', sdisi/misi), ...
|
||||
'Units', 'normalized', 'HorizontalAlignment', 'right')
|
||||
end
|
||||
|
14
pointprocesses/exercises/plotisiserialcorr.m
Normal file
14
pointprocesses/exercises/plotisiserialcorr.m
Normal file
@ -0,0 +1,14 @@
|
||||
function isicorr = plotisiserialcorr(isivec, maxlag)
|
||||
% plot serial correlation of interspike intervals
|
||||
%
|
||||
% Arguments:
|
||||
% isivec: vector of interspike intervals in seconds
|
||||
% maxlag: the maximum lag
|
||||
[isicorr, lags] = isiserialcorr(isivec, maxlag);
|
||||
plot(lags, isicorr, '-b');
|
||||
hold on;
|
||||
scatter(lags, isicorr, 20.0, 'b', 'filled');
|
||||
hold off;
|
||||
xlabel('Lag k')
|
||||
ylabel('\rho_k')
|
||||
end
|
12
pointprocesses/exercises/plotpoissonisih.m
Normal file
12
pointprocesses/exercises/plotpoissonisih.m
Normal file
@ -0,0 +1,12 @@
|
||||
maxisi = 300.0;
|
||||
poissonisis = isis(poissonspikes);
|
||||
rate = 1.0/mean(poissonisis);
|
||||
plotisihist(poissonisis, 0.001);
|
||||
tt = linspace(0.0, 0.001*maxisi, 200);
|
||||
pexp = rate*exp(-tt*rate);
|
||||
hold on;
|
||||
plot(1000.0*tt, pexp, 'r')
|
||||
hold off;
|
||||
xlim([0, maxisi])
|
||||
title('Poisson');
|
||||
savefigpdf(gcf, 'poissonisihist.pdf', 10, 7);
|
@ -1,17 +1,17 @@
|
||||
maxlag = 10;
|
||||
rrange = [-0.5, 1.05];
|
||||
subplot(1, 3, 1);
|
||||
isiserialcorr(poissonisis, maxlag);
|
||||
plotisiserialcorr(poissonisis, maxlag);
|
||||
ylim(rrange)
|
||||
title('Poisson');
|
||||
|
||||
subplot(1, 3, 2);
|
||||
isiserialcorr(pifouisis, maxlag);
|
||||
plotisiserialcorr(pifouisis, maxlag);
|
||||
ylim(rrange)
|
||||
title('PIF OU');
|
||||
|
||||
subplot(1, 3, 3);
|
||||
isiserialcorr(lifadaptisis, maxlag);
|
||||
plotisiserialcorr(lifadaptisis, maxlag);
|
||||
ylim(rrange)
|
||||
title('LIF adapt');
|
||||
savefigpdf(gcf, 'serialcorr.pdf', 20, 7);
|
||||
savefigpdf(gcf, 'serialcorr.pdf', 20, 7);
|
@ -15,6 +15,9 @@
|
||||
|
||||
\begin{questions}
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\question \qt{Read in chapter 10 on ``Spike-train analysis'' sections 10.1 -- 10.5!}\vspace{-3ex}
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\question \qt{Statistics of interspike intervals}
|
||||
Download the files \code{poisson.mat},
|
||||
@ -61,11 +64,12 @@
|
||||
of the spike. When appropriate, the function should use milliseconds
|
||||
for the time axis instead of seconds.
|
||||
|
||||
Use this function to plot the first second of the
|
||||
spike rasters of the three neurons.
|
||||
Use this function to plot the first second of the spike rasters of
|
||||
the three neurons. Carefully look at the raster plots. How do the
|
||||
spike rasters differ between the three neurons?
|
||||
\begin{solution}
|
||||
\lstinputlisting{../code/rasterplot.m}
|
||||
\lstinputlisting{../code/plotspikeraster.m}
|
||||
\lstinputlisting{rasterplot.m}
|
||||
\lstinputlisting{plotspikeraster.m}
|
||||
\mbox{}\\[-3ex]
|
||||
\colorbox{white}{\includegraphics[width=1\textwidth]{spikeraster}}
|
||||
\end{solution}
|
||||
@ -73,7 +77,7 @@
|
||||
\part Write a function that returns a single vector containing the
|
||||
interspike intervals of all trials of spike times.
|
||||
\begin{solution}
|
||||
\lstinputlisting{../code/isis.m}
|
||||
\lstinputlisting{isis.m}
|
||||
\end{solution}
|
||||
|
||||
\part Write a function that computes an estimate of the
|
||||
@ -90,33 +94,51 @@
|
||||
the standard deviation and the coefficient of variation and
|
||||
display them in the plot as well.
|
||||
|
||||
Use this and the previous functions to compare the
|
||||
interspike interval statistics of the three neurons.
|
||||
Use this and the previous functions to compare the interspike
|
||||
interval statistics of the three neurons. How do the ISI
|
||||
histograms differ between the three neurons?
|
||||
\begin{solution}
|
||||
\lstinputlisting{../code/isihist.m}
|
||||
\lstinputlisting{../code/plotisihist.m}
|
||||
\lstinputlisting{../code/plotisihs.m}
|
||||
\lstinputlisting{isihist.m}
|
||||
\lstinputlisting{plotisihist.m}
|
||||
\lstinputlisting{plotisihs.m}
|
||||
\mbox{}\\[-3ex]
|
||||
\colorbox{white}{\includegraphics[width=1\textwidth]{isihist}}
|
||||
\end{solution}
|
||||
|
||||
\part Compare the interspike interval histogram of the Poisson
|
||||
spike train to the expected exponential distribution
|
||||
\[ p(T) = \lambda e^{-\lambda T} \; .\] of a Poisson process with
|
||||
firing rate $\lambda$. Estimate the firing rate from the inverse
|
||||
of the mean interspike interval.
|
||||
\begin{solution}
|
||||
\lstinputlisting{plotpoissonisih.m}
|
||||
%\mbox{}\\[-3ex]
|
||||
%\colorbox{white}{\includegraphics[width=1\textwidth]{poissonisihist}}
|
||||
\end{solution}
|
||||
|
||||
% XXX Add return map!!! XXX
|
||||
\part Write a function that computes and plots the serial
|
||||
correlations of interspike intervals for lags upto
|
||||
\code{maxlag}. The serial correlations $\rho_k$ for lag $k$ of the
|
||||
interspike intervals $T_i$ are the correlation coefficients
|
||||
between interspike intervals $T_i$ and the intervals $T_{i+k}$
|
||||
that are shifted by lag $k$:
|
||||
\part Write a function that computes the serial correlations of
|
||||
interspike intervals for lags up to \code{maxlag}. The serial
|
||||
correlations $\rho_k$ for lag $k$ of the interspike intervals
|
||||
$T_i$ are the correlation coefficients between interspike
|
||||
intervals $T_i$ and the intervals $T_{i+k}$ that are shifted by
|
||||
lag $k$:
|
||||
\[ \rho_k = \frac{\langle (T_{i+k} - \langle T \rangle)(T_i -
|
||||
\langle T \rangle) \rangle}{\langle (T_i - \langle T
|
||||
\rangle)^2\rangle} = \frac{{\rm cov}(T_{i+k}, T_i)}{{\rm
|
||||
var}(T_i)} = {\rm corr}(T_{i+k}, T_i) \]
|
||||
var}(T_i)} = {\rm corr}(T_{i+k}, T_i) \]
|
||||
|
||||
Write another function that plots the serial correlations.
|
||||
|
||||
Use this function to compare the serial correlations of the
|
||||
interspike intervals of the three neurons.
|
||||
Use the functions to compare the serial correlations of the
|
||||
interspike intervals of the three neurons. What do the serial
|
||||
correlations mean? How do they relate to what you see in the
|
||||
raster plots? Do the serial correlations of the Poisson spike
|
||||
train match the expectations?
|
||||
\begin{solution}
|
||||
\lstinputlisting{../code/isiserialcorr.m}
|
||||
\lstinputlisting{../code/plotserialcorr.m}
|
||||
\lstinputlisting{isiserialcorr.m}
|
||||
\lstinputlisting{plotisiserialcorr.m}
|
||||
\lstinputlisting{plotserialcorr.m}
|
||||
\colorbox{white}{\includegraphics[width=1\textwidth]{serialcorr}}
|
||||
\end{solution}
|
||||
|
||||
@ -127,16 +149,22 @@
|
||||
\question \qt{Statistics of spike counts}
|
||||
Now let's have a look at the statistics of the spike counts.
|
||||
\begin{parts}
|
||||
\part Write a function that counts and returns the number of
|
||||
spikes in windows of a given width $W$.
|
||||
\part Write a function that counts and returns a vector with the
|
||||
number of spikes in windows of a given width $W$.
|
||||
|
||||
Use this function to generate a properly normalized histogram of
|
||||
spike counts for the data of the three types of neurons. Use
|
||||
100\,ms for the window width.
|
||||
|
||||
Compare the distributions with the Poisson distribution expected
|
||||
for a Poisson spike train:
|
||||
\[ P(k) = \frac{(\lambda W)^ke^{\lambda W}}{k!} \; , \] where
|
||||
$\lambda$ is the rate of the spike train that you should estimate
|
||||
from the data.
|
||||
\begin{solution}
|
||||
\lstinputlisting{../code/spikecounts.m}
|
||||
\lstinputlisting{counts.m}
|
||||
\newsolutionpage
|
||||
\lstinputlisting{../code/spikecountshists.m}
|
||||
\lstinputlisting{spikecounthists.m}
|
||||
\colorbox{white}{\includegraphics[width=1\textwidth]{spikecountshists}}
|
||||
\end{solution}
|
||||
|
||||
@ -148,9 +176,9 @@
|
||||
(the mean spike count increases for larger window widths). The
|
||||
other plot showing the Fano factor as a function of window width.
|
||||
\begin{solution}
|
||||
\lstinputlisting{../code/fanoplot.m}
|
||||
\lstinputlisting{fanoplot.m}
|
||||
\newsolutionpage
|
||||
\lstinputlisting{../code/fanoplots.m}
|
||||
\lstinputlisting{fanoplots.m}
|
||||
\colorbox{white}{\includegraphics[width=1\textwidth]{fanoplotspoisson}}
|
||||
\colorbox{white}{\includegraphics[width=1\textwidth]{fanoplotspifou}}
|
||||
\colorbox{white}{\includegraphics[width=1\textwidth]{fanoplotslifadapt}}
|
||||
|
@ -103,7 +103,7 @@ f\"ur gen\"ugend kleine $\Delta t$.
|
||||
soll. Hinweis: es gibt eine \code{matlab} Funktion, die die
|
||||
Fakult\"at $n!$ berechnet.
|
||||
\begin{solution}
|
||||
\lstinputlisting{../code/counthist.m}
|
||||
\lstinputlisting{counthist.m}
|
||||
\colorbox{white}{\includegraphics[width=0.48\textwidth]{poissoncounthistdist100hz10ms}}
|
||||
\colorbox{white}{\includegraphics[width=0.48\textwidth]{poissoncounthistdist100hz100ms}}
|
||||
\end{solution}
|
||||
@ -115,7 +115,7 @@ f\"ur gen\"ugend kleine $\Delta t$.
|
||||
den Ergebnissen angefertigt werden: (i) Varianz gegen Mittelwert der counts.
|
||||
(ii) Fano Faktor als Funktion der Fensterbreite.
|
||||
\begin{solution}
|
||||
\lstinputlisting{../code/fano.m}
|
||||
\lstinputlisting{fanoplot.m}
|
||||
\colorbox{white}{\includegraphics[width=0.98\textwidth]{poissonfano100hz}}
|
||||
\end{solution}
|
||||
|
||||
|
43
pointprocesses/exercises/rasterplot.m
Normal file
43
pointprocesses/exercises/rasterplot.m
Normal file
@ -0,0 +1,43 @@
|
||||
function rasterplot(spikes, tmax)
|
||||
% Display a spike raster of the spike times given in spikes.
|
||||
%
|
||||
% rasterplot(spikes, tmax)
|
||||
%
|
||||
% Arguments:
|
||||
% spikes: a cell array of vectors of spike times in seconds
|
||||
% tmax: plot spike raster up to tmax seconds
|
||||
in_msecs = tmax < 1.5
|
||||
spiketimes = [];
|
||||
trials = [];
|
||||
ntrials = length(spikes);
|
||||
for k = 1:ntrials
|
||||
times = spikes{k};
|
||||
times = times(times<tmax);
|
||||
if in_msecs
|
||||
times = 1000.0*times; % conversion to ms
|
||||
end
|
||||
% (x,y) pairs for start and stop of stroke
|
||||
% plus nan separating strokes:
|
||||
spiketimes = [spiketimes, ...
|
||||
[times(:)'; times(:)'; times(:)'*nan]];
|
||||
trials = [trials, ...
|
||||
[ones(1, length(times)) * (k-0.4); ...
|
||||
ones(1, length(times)) * (k+0.4); ...
|
||||
ones(1, length(times)) * nan]];
|
||||
end
|
||||
% convert matrices into simple vectors of (x,y) pairs:
|
||||
spiketimes = spiketimes(:);
|
||||
trials = trials(:);
|
||||
% plotting this is lightning fast:
|
||||
plot(spiketimes, trials, 'k')
|
||||
if in_msecs
|
||||
xlabel('Time [ms]');
|
||||
xlim([0.0 1000.0*tmax]);
|
||||
else
|
||||
xlabel('Time [s]');
|
||||
xlim([0.0 tmax]);
|
||||
end
|
||||
ylabel('Trials');
|
||||
ylim([0.3 ntrials+0.7]);
|
||||
end
|
||||
|
22
pointprocesses/exercises/spikecountshists.m
Normal file
22
pointprocesses/exercises/spikecountshists.m
Normal file
@ -0,0 +1,22 @@
|
||||
w = 0.1;
|
||||
bins = 0:1:10;
|
||||
|
||||
spikecounts{1} = counts(poissonspikes, w);
|
||||
spikecounts{2} = counts(pifouspikes, w);
|
||||
spikecounts{3} = counts(lifadaptspikes, w);
|
||||
titles = {'Poisson', 'PIF OU', 'LIF adapt'};
|
||||
for k = 1:3
|
||||
subplot(1, 3, k);
|
||||
[h, b] = hist(spikecounts{k}, bins);
|
||||
bar(b, h/sum(h));
|
||||
mu = mean(spikecounts{k});
|
||||
ppois = poisspdf(bins, mu);
|
||||
hold on;
|
||||
scatter(bins, ppois, 'filled');
|
||||
hold off;
|
||||
title(titles{k})
|
||||
xlabel('Spike count');
|
||||
xlim([-0.5, 8.5]);
|
||||
ylim([0.0 0.8]);
|
||||
end
|
||||
savefigpdf(gcf, 'spikecountshists.pdf', 20, 7);
|
Reference in New Issue
Block a user