[logisitc] added code on AUC interpretation

This commit is contained in:
Jan Benda 2021-01-11 22:00:25 +01:00
parent 06ae3bb84e
commit 849f1d8f0d
2 changed files with 174 additions and 6 deletions

156
logistic/code/logistic.py Normal file
View File

@ -0,0 +1,156 @@
import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import ttest_ind, mannwhitneyu
def auc(n, dx, uniform=False, plot=False):
# loser:
if uniform:
x0 = np.random.rand(n)
else:
x0 = np.random.randn(n)*0.3
y0 = np.zeros(len(x0))
# winner:
if uniform:
x1 = np.random.rand(n) + dx
else:
x1 = np.random.randn(n)*0.3 + dx
y1 = np.ones(len(x1))
# combine into a single table:
data = np.zeros((len(x0) + len(y0), 2))
data[:len(x0),0] = x0
data[:len(x0),1] = y0
data[len(x0):,0] = x1
data[len(x0):,1] = y1
# fraction of overlapping data values:
si = np.argsort(data[:,0])
i0 = np.argmax(data[si,1] != data[si[0],1])
i1 = len(data) - 1 - np.argmax(data[si[::-1],1] != data[si[-1],1])
overlap = (i1-i0+1)/len(data)
# Cohen's d:
m0 = np.mean(data[data[:,1] < 0.5,0])
v0 = np.var(data[data[:,1] < 0.5,0])
m1 = np.mean(data[data[:,1] > 0.5,0])
v1 = np.var(data[data[:,1] > 0.5,0])
cohensd = (m1 - m0)/np.sqrt(0.5*(v0+v1))
# t-test:
ttest, p = ttest_ind(data[data[:,1] > 0.5,0], data[data[:,1] < 0.5,0])
# Mann-Whitney U:
mannu, p = mannwhitneyu(data[data[:,1] < 0.5,0], data[data[:,1] > 0.5,0])
# ROC:
thresh = np.arange(np.min(data[:,0])-0.1, np.max(data[:,0])+0.2, 0.01)
true_pos = np.zeros(len(thresh))
false_pos = np.zeros(len(thresh))
for k in range(len(thresh)):
true_pos[k] = np.sum(data[data[:,0] > thresh[k],1] > 0.5)/np.sum(data[:,1] > 0.5)
false_pos[k] = np.sum(data[data[:,0] > thresh[k],1] < 0.5)/np.sum(data[:,1] < 0.5)
# AUC:
droc = 0.001
xroc = np.arange(0.0, 1.0+droc, droc)
yroc = np.interp(xroc, false_pos[::-1], true_pos[::-1])
auc = np.sum(yroc)*droc
if plot:
fig = plt.figure()
ax = fig.add_subplot(211)
ax.axvline(data[si[i0],0], color='k')
ax.axvline(data[si[i1],0], color='k', lw=2)
ax.plot(data[:,0], data[:,1], 'o')
ax.plot(data[data[:,1] < 0.5,0], np.zeros(len(data[data[:,1] < 0.5,0]))-0.5, 'or')
ax.plot(data[data[:,1] > 0.5,0], np.zeros(len(data[data[:,1] > 0.5,0]))-0.5, 'og')
ax.text(0.5*(data[si[i0],0]+data[si[i1],0]), 0.65, 'overlap=%.0f%%' % (100.0*overlap), ha='center')
ax.text(0.5*(data[si[i0],0]+data[si[i1],0]), 0.35, "Cohen's d=%.2f" % cohensd, ha='center')
ax.set_xlabel('x')
ax.set_yticks([0, 1])
ax.set_yticklabels(['Lose', 'Win'])
if uniform:
ax.set_title('Uniformly distributed data')
else:
ax.set_title('Normally distributed data')
ax = fig.add_subplot(223)
ax.plot(thresh, true_pos, '-og', label='TP')
ax.plot(thresh, false_pos, '-or', label='FP')
ax.legend()
ax.set_xlabel('threshold')
ax = fig.add_subplot(224)
ax.plot(false_pos, true_pos, '-o')
ax.fill_between(xroc, yroc)
ax.text(0.5, 0.5, 'AUC=%.0f%%' % (100.0*auc))
ax.set_xlabel('FP')
ax.set_ylabel('TP')
fig.tight_layout()
plt.show()
return auc, overlap, cohensd, ttest, mannu
# demo:
auc(20, 0.5, True, True)
auc(20, 0.5, False, True)
# AUC versus overlap:
n = 100
aucs_uni = []
overlaps_uni = []
cohensd_uni = []
ttest_uni = []
mannu_uni = []
aucs_norm = []
overlaps_norm = []
cohensd_norm = []
ttest_norm = []
mannu_norm = []
for frac in np.arange(-1.5, 1.5, 0.02):
a, o, d, t, u = auc(n, frac, True, False)
aucs_uni.append(a)
overlaps_uni.append(o)
cohensd_uni.append(d)
ttest_uni.append(t)
mannu_uni.append(u)
a, o, d, t, u = auc(n, frac, False, False)
aucs_norm.append(a)
overlaps_norm.append(o)
cohensd_norm.append(d)
ttest_norm.append(t)
mannu_norm.append(u)
fig, axs = plt.subplots(2, 2)
ax = axs[0, 0]
ax.plot([0.0, 1.0, 0.0], [0.0, 0.5, 1.0], 'k')
ax.plot(overlaps_uni, aucs_uni, 'o', label='uniform pdfs')
ax.plot(overlaps_norm, aucs_norm, 'o', label='normal pdfs')
ax.set_ylim(0, 1)
ax.set_xlabel('fraction of overlapping data')
ax.set_ylabel('AUC')
ax.legend(loc='center left')
ax = axs[0, 1]
ax.plot(cohensd_uni, aucs_uni, 'o', label='uniform pdfs')
ax.plot(cohensd_norm, aucs_norm, 'o', label='normal pdfs')
ax.set_ylim(0, 1)
ax.set_xlabel("Cohen's d")
ax.set_ylabel('AUC')
#ax.legend(loc='center left')
ax = axs[1, 1]
ax.plot(ttest_uni, aucs_uni, 'o', label='uniform pdfs')
ax.plot(ttest_norm, aucs_norm, 'o', label='normal pdfs')
ax.set_ylim(0, 1)
ax.set_xlabel("Student t")
ax.set_ylabel('AUC')
ax = axs[1, 0]
ax.plot(mannu_uni, aucs_uni, 'o', label='uniform pdfs')
ax.plot(mannu_norm, aucs_norm, 'o', label='normal pdfs')
ax.set_ylim(0, 1)
ax.set_xlabel("Mann-Whitney U")
ax.set_ylabel('AUC')
fig.savefig('aucoverlap.pdf')
plt.show()

View File

@ -56,6 +56,7 @@
% to closed source license models), FAIR % to closed source license models), FAIR
% * knowledge is freedom ... % * knowledge is freedom ...
% * do not consume what companies offer you but know what you want and implement it % * do not consume what companies offer you but know what you want and implement it
% * no screenshots on how to use a stupid GUI program
% * python as a modern and popular programming language in modern science % * python as a modern and popular programming language in modern science
% (i.e. machine learning, others?) with a strong community support. % (i.e. machine learning, others?) with a strong community support.
@ -128,22 +129,33 @@
% add chapters on linear algebra, PCA, clustering, see linearalgebra/ % add chapters on linear algebra, PCA, clustering, see linearalgebra/
% add chapter on logistic regression, see logistic/
% add chapter on simple machine learning, perceptron % add chapter on simple machine learning, perceptron
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%\part{Tools} %\part{Tools}
% add chapter on Markup and LaTeX -> see latex/ % add chapter on Markup and LaTeX -> see latex/
% with an introduction on mark-up in general, an outlook to markdown, html, xml, jason, yaml % - if you know LaTeX you also know how to better use word/libreoffice
% make notes, data, and texts understandable by computers! % - with an introduction on mark-up in general, an outlook to markdown, html, xml, jason, yaml
% - make notes, data, and texts understandable by computers!
% - easily generate markup from python scripts via mako .
% bash basics:
% - calling a (python) script/program with arguments
% - files: ls, cp, mkdir, find, etc.
% - text file manipulations: grep, diff, sed, awk
% - pipes, for loop, if, test
% Makefile % Makefile
% distributed computing (ssh and grid engines) % distributed computing (ssh and grid engines)
%
% see replicability/ : % see replicability/ :
% version control (git and github) only put source files into repository! % - version control (git and github) only put source files into repository!
% data handling (structure, storage (rsync), backup, data bases) % - data handling (structure, storage (rsync), backup, data bases)
% data annotation, meta data, FAIR % - data annotation, meta data, FAIR
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%