[pointprocesses] improved spike count and fano factor exercises
This commit is contained in:
parent
753d756409
commit
7ec4cddd62
@ -1,37 +0,0 @@
|
||||
function counthist(spikes, w)
|
||||
% Plot histogram of spike counts.
|
||||
%
|
||||
% counthist(spikes, w)
|
||||
%
|
||||
% Arguments:
|
||||
% spikes: a cell array of vectors of spike times in seconds
|
||||
% w: duration of window in seconds for computing the counts
|
||||
% collect spike counts:
|
||||
tmax = spikes{1}(end);
|
||||
n = [];
|
||||
r = [];
|
||||
for k = 1:length(spikes)
|
||||
times = spikes{k};
|
||||
% alternative 1: count the number of spikes in each window:
|
||||
% for tk = 0:w:tmax-w
|
||||
% nn = sum((times >= tk) & (times < tk+w));
|
||||
% %nn = length(find((times >= tk) & (times < tk+w)));
|
||||
% n = [n, nn];
|
||||
% end
|
||||
% alternative 2: use the hist() function to do that!
|
||||
tbins = 0.5*w:w:tmax-0.5*w;
|
||||
nn = hist(times, tbins);
|
||||
n = [n, nn];
|
||||
end
|
||||
|
||||
% histogram of spike counts:
|
||||
maxn = max(n);
|
||||
[counts, bins] = hist(n, 0:1:maxn+10);
|
||||
% normalize to probabilities:
|
||||
counts = counts / sum(counts);
|
||||
|
||||
% plot:
|
||||
bar(bins, counts);
|
||||
xlabel('counts k');
|
||||
ylabel('P(k)');
|
||||
end
|
@ -1,39 +0,0 @@
|
||||
function fano( spikes )
|
||||
% computes fano factor as a function of window size
|
||||
% spikes: a cell array of vectors of spike times
|
||||
|
||||
tmax = spikes{1}(end);
|
||||
windows = 0.01:0.05:0.01*tmax;
|
||||
mc = windows;
|
||||
vc = windows;
|
||||
ff = windows;
|
||||
fs = windows;
|
||||
for j = 1:length(windows)
|
||||
w = windows( j );
|
||||
% collect counts:
|
||||
n = [];
|
||||
for k = 1:length(spikes)
|
||||
for tk = 0:w:tmax-w
|
||||
nn = sum( ( spikes{k} >= tk ) & ( spikes{k} < tk+w ) );
|
||||
%nn = length( find( ( spikes{k} >= tk ) & ( spikes{k} < tk+w ) ) );
|
||||
n = [ n nn ];
|
||||
end
|
||||
end
|
||||
% statistics for current window:
|
||||
mc(j) = mean( n );
|
||||
vc(j) = var( n );
|
||||
ff(j) = vc( j )/mc( j );
|
||||
fs(j) = sqrt(vc( j )/mc( j ));
|
||||
end
|
||||
|
||||
subplot( 1, 2, 1 );
|
||||
scatter( mc, vc, 'filled' );
|
||||
xlabel( 'Mean count' );
|
||||
ylabel( 'Count variance' );
|
||||
|
||||
subplot( 1, 2, 2 );
|
||||
scatter( 1000.0*windows, fs, 'filled' );
|
||||
xlabel( 'Window W [ms]' );
|
||||
ylabel( 'Fano factor' );
|
||||
end
|
||||
|
@ -1,33 +0,0 @@
|
||||
function fanoplot(spikes, titles)
|
||||
% computes and plots fano factor as a function of window size
|
||||
% spikes: a cell array of vectors of spike times
|
||||
% titles: string that is used as a title for the plots
|
||||
windows = logspace(-3.0, -0.5, 100);
|
||||
mc = windows;
|
||||
vc = windows;
|
||||
ff = windows;
|
||||
for j = 1:length(windows)
|
||||
w = windows(j);
|
||||
counts = spikecounts(spikes, w);
|
||||
% statistics for current window:
|
||||
mc(j) = mean(counts);
|
||||
vc(j) = var(counts);
|
||||
ff(j) = vc(j)/mc(j);
|
||||
end
|
||||
|
||||
subplot(1, 2, 1);
|
||||
scatter(mc, vc, 'filled');
|
||||
title(titles);
|
||||
xlabel('Mean count');
|
||||
ylabel('Count variance');
|
||||
|
||||
subplot(1, 2, 2);
|
||||
scatter(1000.0*windows, ff, 'filled');
|
||||
title(titles);
|
||||
xlabel('Window [ms]');
|
||||
ylabel('Fano factor');
|
||||
xlim(1000.0*[windows(1) windows(end)])
|
||||
ylim([0.0 1.1]);
|
||||
set(gca, 'XScale', 'log');
|
||||
end
|
||||
|
@ -1,9 +0,0 @@
|
||||
spikes{1} = poissonspikes;
|
||||
spikes{2} = pifouspikes;
|
||||
spikes{3} = lifadaptspikes;
|
||||
idents = {'poisson', 'pifou', 'lifadapt'};
|
||||
for k = 1:3
|
||||
figure(k)
|
||||
fanoplot(spikes{k}, titles{k});
|
||||
savefigpdf(gcf, sprintf('fanoplots%s.pdf', idents{k}), 20, 7);
|
||||
end
|
@ -2,8 +2,6 @@ function spikes = hompoissonspikes(rate, trials, tmax)
|
||||
% Generate spike times of a homogeneous poisson process
|
||||
% using the exponential interspike interval distribution.
|
||||
%
|
||||
% spikes = hompoissonspikes(rate, trials, tmax)
|
||||
%
|
||||
% Arguments:
|
||||
% rate: the rate of the Poisson process in Hertz
|
||||
% trials: number of trials that should be generated
|
||||
@ -11,7 +9,6 @@ function spikes = hompoissonspikes(rate, trials, tmax)
|
||||
%
|
||||
% Returns:
|
||||
% spikes: a cell array of vectors of spike times in seconds
|
||||
|
||||
spikes = cell(trials, 1);
|
||||
mu = 1.0/rate;
|
||||
nintervals = 2*round(tmax/mu);
|
||||
|
@ -1,25 +1,13 @@
|
||||
function [pdf, centers] = isihist(isis, binwidth)
|
||||
% Compute normalized histogram of interspike intervals.
|
||||
%
|
||||
% [pdf, centers] = isihist(isis, binwidth)
|
||||
%
|
||||
% Arguments:
|
||||
% isis: vector of interspike intervals in seconds
|
||||
% binwidth: optional width in seconds to be used for the isi bins
|
||||
% binwidth: width in seconds to be used for the ISI bins
|
||||
%
|
||||
% Returns:
|
||||
% pdf: vector with pdf of interspike intervals in Hertz
|
||||
% centers: vector with centers of interspikeintervalls in seconds
|
||||
|
||||
if nargin < 2
|
||||
% compute good binwidth:
|
||||
nperbin = 200; % average number of data points per bin
|
||||
bins = length(isis)/nperbin; % number of bins
|
||||
binwidth = max(isis)/bins;
|
||||
if binwidth < 5e-4 % half a millisecond
|
||||
binwidth = 5e-4;
|
||||
end
|
||||
end
|
||||
bins = 0.5*binwidth:binwidth:max(isis);
|
||||
% histogram data:
|
||||
[nelements, centers] = hist(isis, bins);
|
||||
|
@ -1,13 +1,11 @@
|
||||
function isivec = isis(spikes)
|
||||
% returns a single list of isis computed from all trials in spikes
|
||||
%
|
||||
% isivec = isis(spikes)
|
||||
%
|
||||
% Arguments:
|
||||
% spikes: a cell array of vectors of spike times in seconds
|
||||
%
|
||||
% Returns:
|
||||
% isivec: a column vector with all the interspike intervalls
|
||||
% isivec: a column vector with all the interspike intervals
|
||||
isivec = [];
|
||||
for k = 1:length(spikes)
|
||||
difftimes = diff(spikes{k});
|
||||
|
@ -1,8 +1,6 @@
|
||||
function [isicorr, lags] = isiserialcorr(isivec, maxlag)
|
||||
% serial correlation of interspike intervals
|
||||
%
|
||||
% isicorr = isiserialcorr(isivec, maxlag)
|
||||
%
|
||||
% Arguments:
|
||||
% isivec: vector of interspike intervals in seconds
|
||||
% maxlag: the maximum lag
|
||||
@ -16,8 +14,7 @@ function [isicorr, lags] = isiserialcorr(isivec, maxlag)
|
||||
lag = lags(k);
|
||||
if length(isivec) > lag+10 % ensure "enough" data
|
||||
% NOTE: the arguments to corr must be column vectors!
|
||||
% We insure this in the isis() function that
|
||||
% generates the isivec.
|
||||
% We insure this already in the isis() function.
|
||||
isicorr(k) = corr(isivec(1:end-lag), isivec(lag+1:end));
|
||||
end
|
||||
end
|
||||
|
@ -1,24 +1,14 @@
|
||||
w = 0.1;
|
||||
cmax = 8;
|
||||
pmax = 0.5;
|
||||
subplot(1, 3, 1);
|
||||
counthist(poissonspikes, w);
|
||||
xlim([0 cmax])
|
||||
set(gca, 'XTick', 0:2:cmax)
|
||||
ylim([0 pmax])
|
||||
title('Poisson');
|
||||
|
||||
subplot(1, 3, 2);
|
||||
counthist(pifouspikes, w);
|
||||
xlim([0 cmax])
|
||||
set(gca, 'XTick', 0:2:cmax)
|
||||
ylim([0 pmax])
|
||||
title('PIF OU');
|
||||
|
||||
subplot(1, 3, 3);
|
||||
counthist(lifadaptspikes, w);
|
||||
xlim([0 cmax])
|
||||
set(gca, 'XTick', 0:2:cmax)
|
||||
ylim([0 pmax])
|
||||
title('LIF adapt');
|
||||
savefigpdf(gcf, 'counthist.pdf', 20, 7);
|
||||
function counthist(spikes, w)
|
||||
% Plot histogram of spike counts.
|
||||
%
|
||||
% Arguments:
|
||||
% spikes: a cell array of vectors of spike times in seconds
|
||||
% w: duration of window in seconds for computing the counts
|
||||
n = counts(spikes, w);
|
||||
maxn = max(n);
|
||||
[counts, bins] = hist(n, 0:1:maxn+10);
|
||||
counts = counts / sum(counts);
|
||||
bar(bins, counts);
|
||||
xlabel('counts k');
|
||||
ylabel('P(k)');
|
||||
end
|
||||
|
31
pointprocesses/code/plotfanofactor.m
Normal file
31
pointprocesses/code/plotfanofactor.m
Normal file
@ -0,0 +1,31 @@
|
||||
function plotfanofactor(spikes, wmin, wmax)
|
||||
% Compute and plot Fano factor as a function of window size.
|
||||
%
|
||||
% Arguments:
|
||||
% spikes: a cell array of vectors of spike times in seconds
|
||||
% wmin: minimum window size in seconds
|
||||
% wmax: maximum window size in seconds
|
||||
windows = logspace(log10(wmin), log10(wmax), 100);
|
||||
mc = zeros(1, length(windows));
|
||||
vc = zeros(1, length(windows));
|
||||
for k = 1:length(windows)
|
||||
w = windows(k);
|
||||
n = counts(spikes, w);
|
||||
mc(k) = mean(n);
|
||||
vc(k) = var(n);
|
||||
end
|
||||
|
||||
subplot(1, 2, 1);
|
||||
scatter(mc, vc, 'filled');
|
||||
xlabel('Mean count');
|
||||
ylabel('Count variance');
|
||||
|
||||
subplot(1, 2, 2);
|
||||
scatter(1000.0*windows, vc ./ mc, 'filled');
|
||||
xlabel('Window [ms]');
|
||||
ylabel('Fano factor');
|
||||
xlim(1000.0*[windows(1) windows(end)])
|
||||
ylim([0.0 1.1]);
|
||||
set(gca, 'XScale', 'log');
|
||||
end
|
||||
|
@ -1,24 +1,13 @@
|
||||
function plotisihist(isis, binwidth)
|
||||
% Plot and annotate histogram of interspike intervals.
|
||||
%
|
||||
% plotisihist(isis, binwidth)
|
||||
%
|
||||
% Arguments:
|
||||
% isis: vector of interspike intervals in seconds
|
||||
% binwidth: optional width in seconds to be used for the isi bins
|
||||
|
||||
% compute normalized histogram:
|
||||
if nargin < 2
|
||||
[pdf, centers] = isihist(isis);
|
||||
else
|
||||
[pdf, centers] = isihist(isis, binwidth);
|
||||
end
|
||||
|
||||
% plot:
|
||||
% binwidth: width in seconds to be used for the ISI bins
|
||||
[pdf, centers] = isihist(isis, binwidth);
|
||||
bar(1000.0*centers, pdf); % milliseconds on x-axis
|
||||
xlabel('ISI [ms]')
|
||||
ylabel('p(ISI) [1/s]')
|
||||
% annotation:
|
||||
misi = mean(isis);
|
||||
sdisi = std(isis);
|
||||
text(0.95, 0.8, sprintf('mean=%.1f ms', 1000.0*misi), ...
|
||||
|
@ -1,8 +1,6 @@
|
||||
function isicorr = plotisiserialcorr(isivec, maxlag)
|
||||
% plot serial correlation of interspike intervals
|
||||
%
|
||||
% plotisiserialcorr(isivec, maxlag)
|
||||
%
|
||||
% Arguments:
|
||||
% isivec: vector of interspike intervals in seconds
|
||||
% maxlag: the maximum lag
|
||||
|
@ -1,8 +1,6 @@
|
||||
function rasterplot(spikes, tmax)
|
||||
% Display a spike raster of the spike times given in spikes.
|
||||
%
|
||||
% rasterplot(spikes, tmax)
|
||||
%
|
||||
% Arguments:
|
||||
% spikes: a cell array of vectors of spike times in seconds
|
||||
% tmax: plot spike raster up to tmax seconds
|
||||
@ -21,7 +19,7 @@ function rasterplot(spikes, tmax)
|
||||
ones(1, length(times)) * (k+0.4); ...
|
||||
ones(1, length(times)) * nan]];
|
||||
end
|
||||
% convert matrices into simple vectors of (x,y) pairs:
|
||||
% convert matrices into column vectors of (x,y) pairs:
|
||||
spiketimes = spiketimes(:);
|
||||
trials = trials(:);
|
||||
% plotting this is lightning fast:
|
||||
|
@ -239,19 +239,18 @@ describing univariate data sets of real numbers:
|
||||
|
||||
\begin{exercise}{isihist.m}{}
|
||||
Implement a function \varcode{isihist()} that calculates the
|
||||
normalized interspike interval histogram. The function should take
|
||||
two input arguments; (i) a vector of interspike intervals and (ii)
|
||||
the width of the bins used for the histogram. It returns the
|
||||
normalized interspike interval histogram. The function should take a
|
||||
vector of interspike intervals and the width of the bins to be used
|
||||
for the histogram as input arguments. The function returns the
|
||||
probability density as well as the centers of the bins.
|
||||
\end{exercise}
|
||||
|
||||
\begin{exercise}{plotisihist.m}{}
|
||||
Implement a function that takes the returned values of
|
||||
\varcode{isihist()} as input arguments and then plots the data. The
|
||||
plot should show the histogram with the x-axis scaled to
|
||||
milliseconds and should be annotated with the average ISI, the
|
||||
standard deviation, and the coefficient of variation of the ISIs
|
||||
(\figref{isihexamplesfig}).
|
||||
Implement a function that uses the \varcode{isihist()} function from
|
||||
the previous exercise to plot an ISI histogram. The plot shows the
|
||||
histogram with the x-axis scaled to milliseconds, annotated with the
|
||||
average ISI, the standard deviation, and the coefficient of
|
||||
variation of the ISIs (\figref{isihexamplesfig}).
|
||||
\end{exercise}
|
||||
|
||||
\subsection{Interval correlations}
|
||||
@ -332,8 +331,8 @@ characterized by the non-zero serial correlations
|
||||
|
||||
\begin{exercise}{isiserialcorr.m}{}
|
||||
Implement a function \varcode{isiserialcorr()} that takes a vector
|
||||
of interspike intervals as input argument and calculates the serial
|
||||
correlations up to some maximum lag.
|
||||
of interspike intervals as input and computes serial correlations up
|
||||
to some maximum lag.
|
||||
\end{exercise}
|
||||
|
||||
\begin{exercise}{plotisiserialcorr.m}{}
|
||||
@ -398,27 +397,10 @@ Because spike counts are unitless and positive numbers the
|
||||
\end{equation}
|
||||
is a commonly used measure for quantifying the variability of event
|
||||
counts relative to the mean number of events. In particular for
|
||||
homogeneous Poisson processes the Fano factor equals one,
|
||||
independently of the time window $W$.
|
||||
homogeneous Poisson processes the Fano factor equals exactly one and
|
||||
is independent of the time window $W$.
|
||||
\end{itemize}
|
||||
|
||||
Note that all of these statistics depend in general on the chosen
|
||||
window length $W$. The average spike count, for example, grows
|
||||
linearly with $W$ for sufficiently large time windows: $\langle n
|
||||
\rangle = r W$, \eqnref{firingrate}. Doubling the counting window
|
||||
doubles the spike count. As does the spike-count variance
|
||||
(\figref{fanofig}). At smaller time windows the statistics of the
|
||||
event counts might depend on the particular duration of the counting
|
||||
window. There might be an optimal time window for which the variance
|
||||
of the spike count is minimal. The Fano factor plotted as a function
|
||||
of the time window illustrates such properties of point processes
|
||||
(\figref{fanofig}).
|
||||
|
||||
This also has consequences for information transmission in neural
|
||||
systems. The lower the variance in spike count relative to the
|
||||
averaged count, the higher the signal-to-noise ratio at which
|
||||
information encoded in the mean spike count is transmitted.
|
||||
|
||||
\begin{figure}[t]
|
||||
\includegraphics{fanoexamples}
|
||||
\titlecaption{\label{fanofig} Fano factor.}{Counting events in time
|
||||
@ -435,13 +417,52 @@ information encoded in the mean spike count is transmitted.
|
||||
interspike intervals (right).}
|
||||
\end{figure}
|
||||
|
||||
\begin{exercise}{counthist.m}{}
|
||||
Implement a function \varcode{counthist()} that calculates and plots
|
||||
the distribution of spike counts observed in a certain time
|
||||
window. The function should take two input arguments: a cell-array
|
||||
of vectors containing the spike times in seconds observed in a
|
||||
number of trials, and the duration of the time window that is used
|
||||
to evaluate the counts.
|
||||
Note that all of these statistics depend in general on the chosen
|
||||
window length $W$ used for counting the events. The average spike
|
||||
count, for example, grows linearly with $W$ for sufficiently large
|
||||
time windows: $\langle n \rangle = r W$, \eqnref{firingrate}. Doubling
|
||||
the counting window doubles the spike count. As does the spike-count
|
||||
variance (\figref{fanofig}). At smaller time windows the statistics of
|
||||
the event counts might depend on the particular duration of the
|
||||
counting window. There could be an optimal time window for which the
|
||||
variance of the spike count is minimal. The Fano factor plotted as a
|
||||
function of the time window illustrates such properties of point
|
||||
processes in a single graph (\figref{fanofig}).
|
||||
|
||||
This also has consequences for information transmission in neural
|
||||
systems. The membrane time constant of a post-synaptic neuron defines
|
||||
a counting window. If input spikes arrive within about one time
|
||||
constant they are added up. The lower the variance in spike count
|
||||
relative to the averaged count, the higher the signal-to-noise ratio
|
||||
at which information encoded in the mean spike count is
|
||||
transmitted. If the membrane time constant of the target neuron
|
||||
matches the counting window where the Fano factor is minimal, then
|
||||
information is potentially transmitted at the highest possible
|
||||
signal-to-noise ratio. For this reason, the Fano factor is used in the
|
||||
Neurosciences to quantify and analyze reliability of neuronal
|
||||
responses.
|
||||
|
||||
\begin{exercise}{counts.m}{}
|
||||
Write a function \varcode{counts()} that counts the number of spikes
|
||||
in windows of given duration and returns the counts in a single
|
||||
vector. Spike times are passed as a cell-array of vectors,
|
||||
containing the spike times in seconds observed in a number of
|
||||
trials, to the function.
|
||||
\end{exercise}
|
||||
|
||||
\begin{exercise}{plotcounthist.m}{}
|
||||
Write a function that takes a cell-array with spike times as input
|
||||
and plots a normalized histogram of the spike counts counted in
|
||||
windows of a given duration.
|
||||
\end{exercise}
|
||||
|
||||
\begin{exercise}{plotfanofactor.m}{}
|
||||
Write a function that takes a cell-array with spike times as input
|
||||
and plots in one plot count variances a function of the
|
||||
corresponding mean counts and in a second plot the Fano factor as a
|
||||
function of the duration of the count window in logarithmic
|
||||
scale. Two arguments of the function take the minimum and maximum
|
||||
duration of the count window.
|
||||
\end{exercise}
|
||||
|
||||
|
||||
|
Reference in New Issue
Block a user