finished solutions for spike counts
This commit is contained in:
parent
b8b6e38792
commit
78b5c082d6
@ -1,37 +1,33 @@
|
||||
function fanoplot( spikes )
|
||||
% computes fano factor as a function of window size
|
||||
function fanoplot(spikes, titles)
|
||||
% computes and plots fano factor as a function of window size
|
||||
% spikes: a cell array of vectors of spike times
|
||||
|
||||
tmax = spikes{1}(end);
|
||||
windows = 0.01:0.05:0.01*tmax;
|
||||
% titles: string that is used as a title for the plots
|
||||
windows = logspace(-3.0, -0.5, 100);
|
||||
mc = windows;
|
||||
vc = windows;
|
||||
ff = windows;
|
||||
for j = 1:length(windows)
|
||||
w = windows(j);
|
||||
% collect counts:
|
||||
n = [];
|
||||
for k = 1:length(spikes)
|
||||
for tk = 0:w:tmax-w
|
||||
nn = sum( ( spikes{k} >= tk ) & ( spikes{k} < tk+w ) );
|
||||
%nn = length( find( ( spikes{k} >= tk ) & ( spikes{k} < tk+w ) ) );
|
||||
n = [ n nn ];
|
||||
end
|
||||
end
|
||||
counts = spikecounts(spikes, w);
|
||||
% statistics for current window:
|
||||
mc(j) = mean( n );
|
||||
vc(j) = var( n );
|
||||
mc(j) = mean(counts);
|
||||
vc(j) = var(counts);
|
||||
ff(j) = vc(j)/mc(j);
|
||||
end
|
||||
|
||||
subplot(1, 2, 1);
|
||||
scatter(mc, vc, 'filled');
|
||||
title(titles);
|
||||
xlabel('Mean count');
|
||||
ylabel('Count variance');
|
||||
|
||||
subplot(1, 2, 2);
|
||||
scatter(1000.0*windows, ff, 'filled');
|
||||
xlabel( 'Window W [ms]' );
|
||||
title(titles);
|
||||
xlabel('Window [ms]');
|
||||
ylabel('Fano factor');
|
||||
xlim(1000.0*[windows(1) windows(end)])
|
||||
ylim([0.0 1.1]);
|
||||
set(gca, 'XScale', 'log');
|
||||
end
|
||||
|
||||
|
9
pointprocesses/code/fanoplots.m
Normal file
9
pointprocesses/code/fanoplots.m
Normal file
@ -0,0 +1,9 @@
|
||||
spikes{1} = poissonspikes;
|
||||
spikes{2} = pifouspikes;
|
||||
spikes{3} = lifadaptspikes;
|
||||
idents = {'poisson', 'pifou', 'lifadapt'};
|
||||
for k = 1:3
|
||||
figure(k)
|
||||
fanoplot(spikes{k}, titles{k});
|
||||
savefigpdf(gcf, sprintf('fanoplots%s.pdf', idents{k}), 20, 7);
|
||||
end
|
@ -15,13 +15,14 @@ function counts = spikecounts(spikes, w)
|
||||
counts = [];
|
||||
for k = 1:length(spikes)
|
||||
times = spikes{k};
|
||||
% alternative 1: count the number of spikes in each window:
|
||||
% method 1: count the number of spikes in each window:
|
||||
% for tk = 0:w:tmax-w
|
||||
% nn = sum((times >= tk) & (times < tk+w));
|
||||
% %nn = length(times((times >= tk) & (times < tk+w)));
|
||||
% %nn = length(find((times >= tk) & (times < tk+w)));
|
||||
% counts = [counts nn];
|
||||
% end
|
||||
% alternative 2: use the hist() function to do that!
|
||||
% method 2: use the hist() function to do that!
|
||||
tbins = 0.5*w:w:tmax-0.5*w;
|
||||
nn = hist(times, tbins);
|
||||
counts = [counts nn];
|
||||
|
17
pointprocesses/code/spikecountshists.m
Normal file
17
pointprocesses/code/spikecountshists.m
Normal file
@ -0,0 +1,17 @@
|
||||
w = 0.1;
|
||||
bins = 0.0:1.0:10.0;
|
||||
|
||||
counts{1} = spikecounts(poissonspikes, w);
|
||||
counts{2} = spikecounts(pifouspikes, w);
|
||||
counts{3} = spikecounts(lifadaptspikes, w);
|
||||
titles = {'Poisson', 'PIF OU', 'LIF adapt'};
|
||||
for k = 1:3
|
||||
subplot(1, 3, k);
|
||||
[h, b] = hist(counts{k}, bins);
|
||||
bar(b, h/sum(h));
|
||||
title(titles{k})
|
||||
xlabel('Spike count');
|
||||
xlim([-0.5, 8.5]);
|
||||
ylim([0.0 0.8]);
|
||||
end
|
||||
savefigpdf(gcf, 'spikecountshists.pdf', 20, 7);
|
BIN
pointprocesses/exercises/fanoplotslifadapt.pdf
Normal file
BIN
pointprocesses/exercises/fanoplotslifadapt.pdf
Normal file
Binary file not shown.
BIN
pointprocesses/exercises/fanoplotspifou.pdf
Normal file
BIN
pointprocesses/exercises/fanoplotspifou.pdf
Normal file
Binary file not shown.
BIN
pointprocesses/exercises/fanoplotspoisson.pdf
Normal file
BIN
pointprocesses/exercises/fanoplotspoisson.pdf
Normal file
Binary file not shown.
@ -195,7 +195,7 @@ jan.benda@uni-tuebingen.de}
|
||||
|
||||
\end{parts}
|
||||
|
||||
\continue
|
||||
\continuepage
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\question \qt{Statistics of spike counts}
|
||||
Now let's have a look at the statistics of the spike counts.
|
||||
@ -208,18 +208,25 @@ jan.benda@uni-tuebingen.de}
|
||||
width.
|
||||
\begin{solution}
|
||||
\lstinputlisting{../code/spikecounts.m}
|
||||
% XXX
|
||||
\newsolutionpage
|
||||
\lstinputlisting{../code/spikecountshists.m}
|
||||
\colorbox{white}{\includegraphics[width=1\textwidth]{spikecountshists}}
|
||||
\end{solution}
|
||||
|
||||
\part Write a function that computes for a range from window
|
||||
\newsolutionpage
|
||||
\part Write a function that computes for a range of window
|
||||
widths the mean, the variance and the Fano factor of the
|
||||
corresponding spike counts. The function should the generate two
|
||||
corresponding spike counts. The function should generate two
|
||||
plots. One showing the spike count variance in dependence on the
|
||||
mean spike count. The other plot showing the Fano factor as a
|
||||
function of window width.
|
||||
\begin{solution}
|
||||
\lstinputlisting{../code/fanoplot.m}
|
||||
% XXX
|
||||
\newsolutionpage
|
||||
\lstinputlisting{../code/fanoplots.m}
|
||||
\colorbox{white}{\includegraphics[width=1\textwidth]{fanoplotspoisson}}
|
||||
\colorbox{white}{\includegraphics[width=1\textwidth]{fanoplotspifou}}
|
||||
\colorbox{white}{\includegraphics[width=1\textwidth]{fanoplotslifadapt}}
|
||||
\end{solution}
|
||||
|
||||
\end{parts}
|
||||
|
BIN
pointprocesses/exercises/spikecountshists.pdf
Normal file
BIN
pointprocesses/exercises/spikecountshists.pdf
Normal file
Binary file not shown.
Reference in New Issue
Block a user