Merge branch 'master' of https://whale.am28.uni-tuebingen.de/git/teaching/scientificComputing
This commit is contained in:
commit
69dd21b2ec
@ -28,6 +28,64 @@ Correlation theorem:
|
|||||||
\[ {\cal F}\{Corr(x,y)\} = X(f)Y^*(f) = S_{x,y} \]
|
\[ {\cal F}\{Corr(x,y)\} = X(f)Y^*(f) = S_{x,y} \]
|
||||||
|
|
||||||
\section{Transfer function}
|
\section{Transfer function}
|
||||||
|
The complex valued transfer function of a linear, noiseless system
|
||||||
|
relating stimulus $s(t)$ and response $r(t)$ is
|
||||||
|
\begin{equation}
|
||||||
|
\label{transfer}
|
||||||
|
H(\omega) = \frac{R(\omega)}{S(\omega)}
|
||||||
|
\end{equation}
|
||||||
|
where $S(\omega)$ and $R(\omega)$ are the Fourier transformed stimulus
|
||||||
|
and response, respectively. By means of the transfer function, the
|
||||||
|
response of the system to a stimulus can be predicted according to
|
||||||
|
\begin{equation}
|
||||||
|
R(\omega) = H(\omega) S(\omega)
|
||||||
|
\end{equation}
|
||||||
|
|
||||||
|
Now, if the system is noisy, then the transfer function can only
|
||||||
|
predict the mean response $\langle R \rangle_n$, averaged over the
|
||||||
|
noise, i.e. averaged over responses evoked by several presentations
|
||||||
|
of the same, frozen stimulus:
|
||||||
|
\begin{equation}
|
||||||
|
\label{transfernoise}
|
||||||
|
\langle R(\omega) \rangle_n = H(\omega) S(\omega)
|
||||||
|
\end{equation}
|
||||||
|
|
||||||
|
Both sides of this equation can be multiplied by the complex conjugate
|
||||||
|
stimulus $S^*(\omega)$. Since the stimulus is always the same,
|
||||||
|
$S^*(\omega)$ can be pulled into the average over the noise and we get
|
||||||
|
\begin{equation}
|
||||||
|
\langle R(\omega)S^*(\omega) \rangle_n = H(\omega) S(\omega)S^*(\omega)
|
||||||
|
\end{equation}
|
||||||
|
The right hand side can also be averaged over the noise, but it makes
|
||||||
|
no difference, because neither $S(\omega)$ nore $H(\omega)$ depend on
|
||||||
|
the noise. In addition, we can average both sides over different
|
||||||
|
realizations of the stimulus. We denote this average by $\langle \cdot
|
||||||
|
\rangle_s$. Because the transfer function does note depend on the
|
||||||
|
stimulus it can be pulled out of the stimulus average and we get
|
||||||
|
\begin{equation}
|
||||||
|
\langle\langle R(\omega)S^*(\omega) \rangle_n\rangle_s = H(\omega) \langle \langle S(\omega)S^*(\omega) \rangle_n \rangle_s
|
||||||
|
\end{equation}
|
||||||
|
|
||||||
|
Finally, let's solve for the transfer function and denote both
|
||||||
|
averages by $\langle \cdot \rangle$:
|
||||||
|
\begin{equation}
|
||||||
|
\label{transfercsd}
|
||||||
|
H(\omega) = \frac{\langle R(\omega)S^*(\omega) \rangle}{\langle S(\omega)S^*(\omega) \rangle}
|
||||||
|
\end{equation}
|
||||||
|
The transfer function of a noisy system is estimated by dividing the
|
||||||
|
cross spectrum by the power spectrum of the stimulus.
|
||||||
|
|
||||||
|
If we are interested in the gain of the transfer function, i.e. its magnitude, we get starting from Eq.~\eqref{transfernoise}
|
||||||
|
\begin{eqnarray}
|
||||||
|
|\langle R(\omega) \rangle_n| & = & |H(\omega)| |S(\omega)| \\
|
||||||
|
\langle R(\omega) \rangle_n \langle R(\omega) \rangle_n^* & = & |H(\omega)|^2 S(\omega)S^*(\omega)\\
|
||||||
|
\langle \langle R(\omega) \rangle_n \langle R(\omega) \rangle_n^* \rangle_s & = & |H(\omega)|^2 \langle S(\omega)S^*(\omega) \rangle_s \\
|
||||||
|
|H(\omega)|^2 & = & \frac{\langle \langle R(\omega) \rangle_n \langle R(\omega) \rangle_n^* \rangle_s}{\langle S(\omega)S^*(\omega) \rangle_s} \\
|
||||||
|
|H(\omega)|^2 & \ne & \frac{\langle \langle R(\omega) R^*(\omega) \rangle_n \rangle_s}{\langle S(\omega)S^*(\omega) \rangle_s}
|
||||||
|
\end{eqnarray}
|
||||||
|
For noisy systems, dividing the power spectrum of the response by the
|
||||||
|
power spectrum of the stimulus is not resulting in the squared gain of
|
||||||
|
the transfer function. Only for noise-free systems does this work.
|
||||||
|
|
||||||
\section{Coherence function}
|
\section{Coherence function}
|
||||||
|
|
||||||
|
Reference in New Issue
Block a user