diff --git a/programming/exercises/psths.m b/programming/exercises/psths.m
index 4b47850..2decc04 100644
--- a/programming/exercises/psths.m
+++ b/programming/exercises/psths.m
@@ -24,6 +24,7 @@ ylabel('firing rate [Hz]')
ylim([0 300])
xlim([0 1])
title('instanataneous firing rate')
+saveas(fig, 'isi.pdf','pdf')
%% create PSTH using the binning method
bin_width = 0.0125; % s
@@ -49,7 +50,7 @@ xlim([0 1])
xlabel('time [s]')
ylabel('firing rate [Hz]')
title('binning method')
-
+saveas(fig, 'binning.pdf', 'pdf')
%% create PSTH using the kernel-convolution method
kernel_width = 0.0125; %s
binary_spikes = zeros(size(times,2), round(max_time*sample_rate));
diff --git a/programming/lectures/images/binning.pdf b/programming/lectures/images/binning.pdf
new file mode 100644
index 0000000..2e85541
Binary files /dev/null and b/programming/lectures/images/binning.pdf differ
diff --git a/programming/lectures/images/conv.pdf b/programming/lectures/images/conv.pdf
new file mode 100644
index 0000000..1b4cc81
Binary files /dev/null and b/programming/lectures/images/conv.pdf differ
diff --git a/programming/lectures/images/isi.pdf b/programming/lectures/images/isi.pdf
new file mode 100644
index 0000000..47fb4e1
Binary files /dev/null and b/programming/lectures/images/isi.pdf differ
diff --git a/programming/lectures/images/sta.pdf b/programming/lectures/images/sta.pdf
new file mode 100644
index 0000000..625ec9e
--- /dev/null
+++ b/programming/lectures/images/sta.pdf
@@ -0,0 +1,662 @@
+%PDF-1.5
%
+1 0 obj
<>/OCGs[13 0 R]>>/Pages 3 0 R/Type/Catalog>>
endobj
11 0 obj
<>stream
+
+
+
+
+ GPL Ghostscript 8.61
+ Thu Oct 27 12:49:44 2011
+
+
+ 2011-11-16T21:36:48+01:00
+ Thu -Oc-t T27: 1:2:49::4
+ gnuplot 4.4 patchlevel 0
+ 2011-11-16T21:36:48+01:00
+
+
+
+ 256
+ 164
+ JPEG
+ /9j/4AAQSkZJRgABAgEASABIAAD/7QAsUGhvdG9zaG9wIDMuMAA4QklNA+0AAAAAABAASAAAAAEA
AQBIAAAAAQAB/+4ADkFkb2JlAGTAAAAAAf/bAIQABgQEBAUEBgUFBgkGBQYJCwgGBggLDAoKCwoK
DBAMDAwMDAwQDA4PEA8ODBMTFBQTExwbGxscHx8fHx8fHx8fHwEHBwcNDA0YEBAYGhURFRofHx8f
Hx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8f/8AAEQgApAEAAwER
AAIRAQMRAf/EAaIAAAAHAQEBAQEAAAAAAAAAAAQFAwIGAQAHCAkKCwEAAgIDAQEBAQEAAAAAAAAA
AQACAwQFBgcICQoLEAACAQMDAgQCBgcDBAIGAnMBAgMRBAAFIRIxQVEGE2EicYEUMpGhBxWxQiPB
UtHhMxZi8CRygvElQzRTkqKyY3PCNUQnk6OzNhdUZHTD0uIIJoMJChgZhJRFRqS0VtNVKBry4/PE
1OT0ZXWFlaW1xdXl9WZ2hpamtsbW5vY3R1dnd4eXp7fH1+f3OEhYaHiImKi4yNjo+Ck5SVlpeYmZ
qbnJ2en5KjpKWmp6ipqqusra6voRAAICAQIDBQUEBQYECAMDbQEAAhEDBCESMUEFURNhIgZxgZEy
obHwFMHR4SNCFVJicvEzJDRDghaSUyWiY7LCB3PSNeJEgxdUkwgJChgZJjZFGidkdFU38qOzwygp
0+PzhJSktMTU5PRldYWVpbXF1eX1RlZmdoaWprbG1ub2R1dnd4eXp7fH1+f3OEhYaHiImKi4yNjo
+DlJWWl5iZmpucnZ6fkqOkpaanqKmqq6ytrq+v/aAAwDAQACEQMRAD8A9U4q7FWAzWXm6H8yTqC2
epXGkmVV9aO+jFj9Ukt4ofT+pSXMY9WK59Sd39HkU2VmaiYql8eifmzBrujiO4+t6Fbatcz6hLcX
3p3ctvNLLwaSOOFonhSJlKRKyfEaFAACqrMorrzBeanqcVtPa21pYzpbxrLbyTSPytoZy5dZ4gN5
itOPbriqK+r+Zf8Alvs/+kOX/sqxV31fzL/y32f/AEhy/wDZVirvq/mX/lvs/wDpDl/7KsVUL3/E
1vB6ovbJqPGrVtJVAV5FVmJN1+ypJxVX+r+Zf+W+z/6Q5f8AsqxV31fzL/y32f8A0hy/9lWKu+r+
Zf8Alvs/+kOX/sqxVpofMSirahZKPE2coG+3/LViqkq+aTdywm8shGkcbrJ9Ul3Z2cMtPrXbgPvx
VW+r+Zf+W+z/AOkOX/sqxV31fzL/AMt9n/0hy/8AZVirvq/mX/lvs/8ApDl/7KsVUrmLzWltK8F3
ZSzqjGKL6pIvNwKqtTdUFTtirrk65a28tzc6pYQW0CNJPPJayIiIg5MzM10AqqBUk4qx6X8xNCji
9VfOOhXApEwS1jNzIVnlSGNxHBdyOVMkyDkBQV32xVFaZ5xsNUaxTT/NeiXE2pI0lhbpH++mWOok
4RG79QlCpDjjVSCDQjFUDD+ZegSvFGPN+ipLLJcxrE8LK4FkZhPI6m6rHEv1WT949E267iqq8fmH
owmfn508traiBbiOcyRUZTI8btT699lWQDl0rt2xVEp520l7mO1Tzl5fa6mZY4YAUMju6hlVVF7U
llIIA7Yqsi896TLpk2qr5u0NdKhufqT6i6cLU3HBZPTSd7tY3PFx9lj3HUHFUVc+aLa1eBLnzVoc
D3TpHbLIoQyvIzIixhrwcizRsqgdSD4Yql8v5h6MbO6ntPOnlu5e2ga4KrJEFChuCs7fXqIpkITk
dqnFU00zX/0rcyWul+ZdGv7mKOOeWC1j9Z1imUNFIypeMQjqwKt0I6Yqmf1fzL/y32f/AEhy/wDZ
Virvq/mX/lvs/wDpDl/7KsVd9X8y/wDLfZ/9Icv/AGVYqpaXd6x+mb7TtQkgnSC3triCa3heD+/e
dGRleWevH0Aagjr0xVN8VdiqA/xBoP6Z/Qn6Stf00I/WOmevH9a9L/fno8vU4+9KYqpP5r8rpfW9
g+sWK393JJBa2huYRNLLC3CWOOMtyZo2FGUCoPXFVui/8dLXv+Y9P+oG1xVNsVdirxG68m3+o6j5
i0ny9qmjWnmP1Z5L7VdL1OS316aG4vo7gQ3jR28xtPTiX0lcrL2CBFLKVVZvyw1uw8r6zpWpalBL
qHmF9Pg095r6dZprm1vJ71klu4oIJC7IamSOOpozcRiqGj8hfnPqLyyDWLzSnmtuNpPdalKWtDH6
1vErWts9zBcTSQRwvM7vRXdnQswxVOrPydqdx+VWraXf6wLtLyx9M63qGsSapEEjnmeUvLLaWsPp
xoa+r6RL/ZeqRoSql17o+j+WrFdL8o+e7WG5srlXu9Dur3T9Ptud4rIrumm2iSQsfVRkRVETU5Fe
R54qhY/ym836vptvdP5gTWW+uC7eSTVL+WItb6pLOqW0nFzb/wCjrFExiAoy96VKr21QPrch7+nH
v/snxVVxV2KuxVbK4jieQioRSxHyFcVQ+q6dBqel3mm3H9xewSW03wo/wSoUb4ZVkjbZujqV8QRi
rzax/wCcftAgR4LnWtTvLQXMN5axSNbhkmh9Ih3kENXb90VAHFAjUCVAbFUZZfkH5CtruwlmhOo2
+n2/1SKx1G30+8hMAkllSOs9q8sYSS4cj0nTsDVVUBV2p/khoc1jexabf3Nldz3D3lnM6xSxW05N
60fGFVhLxxtqchVC/wCytSRXkqxq1/5xwjmuVt9b8ySajp6E381sthaoZNVmest63r/WoirCPj6D
RGOnau+Ksnn/ACI8kz/UfW9SRbEycUe3090ZJRGGRUa1KQAeivFrYRsvRWAoAqqah+S2hah5Vm8u
XeralLb3F2b2e6b6kZnY2v1PgyG1+rlBEBx/dclYBgwYA4qg9Q/IzyE3oNdyXErfXHlT6xHaXgY3
QQSQCO5tp0RGeMyckVXVmch1BOAmmcIGV10FofW/yKsgf0noWv3mmaxZ2tvbafdTQ2t5FCtotsqn
0zHDI9RZIeDS+mHLME+I1LBO/wAuvyh8u+RZPrGnStPdPaRWk00sFort6aRq7iZIVuqSNEGMbzsg
P2QNsVZobOEkktLU77SyAfcGwcLYMp8vkP1NfUof5pf+R0v/ADVg4U+KfL5D9SpFCkQIUsa/zMz/
APEicIDCUiUstv8AlK9R/wCYCx/5PXeFim2KuxViM/krV/8AGH6ettVt47M3K3hsZLN5JPVNvFZz
D11uIxxa2hPAen8LnkeQHAqoSP8ALvUrW6sIdP1O0t/L9rqMupz6M1gSsjvcevEqSR3EIj9D9j4G
Xl8RU0AxVkGiwp+mNemq3P66i05Nxp9Rtf2K8a+9K4qnOKuxV4D5k1HyZDDfWWqeaLSDRYL+7Onx
3+hzSwzTvfC6u7eedpFF/GkkLK0cXplvhLeowTFUsn/J/wDLa50gaLZeeNGfVQ0kF1OEtpZZJnWS
0V5I1ug3qW63oCVaqtx8aYqib38o/Il75m1bVLDzdo2nx2F3btLb/U0VLVYU9a3FGu47VzFBIEik
EPEAEMGYNirN9E0DyDo35bvoE+t6ANF131bfStQhitraG4eQt6R3nkjupo2pRkI3XYDFWPeYNB/L
641K/wBI13zlpIWGymuLKOVY4Hsl1GW2D3Elw1z6cjEwgQrxXZ6PzVt1WS/lF5k8pWST+RbXzSuu
6ppc0scSmCWFI4YyUW3ikcelLwELmkbno3EBU2VT1/zN8mwas9rNcXcV0zpbGGTT79HRlkVecgaA
FIeVzGBM9IzyFGxVEaf+Zvku/s727gvZVh063lvLwT2l3byJbwRxzPJ6c0UchHpzoy0X4gfhriqb
6L5l8ua7HLLomq2eqxwN6c72VxFcKjkV4uYmbifY4qmOKqN4K2c48Y3H/CnFVbFXYq7FXYqoqP8A
TJT4xxj7mfFVbFXYqgNaFbZR/wAZP+TEmQycnK0v1fL/AHUUTeCtnOPGNx/wpybiq2KuxV2KuxVJ
rKFI/NmqFSxL2Vix5Mzb+td9ORNB7DbFU5xV2Kpb5h1xdF08Xf1Se/leWK3gsrX0vWlkmcIqqZ5I
Ih1qSzgUxVAWvnjSrmPyy8cF0B5qXlYExfDF/oj3nG4kBMaNwiK8QxJbpUAkKojRZof0xr0PqL6x
vUYR8hy4/UbUV49aYqnOKuxV4JfeXPyb1rUNbabzFqUM4S6a6eOzNvJ6KvMLktPJZVvVUwTRJK5k
ZQGVG5VJVW6i/wCTN1ZQpZanrLzJc2jwy21jOJg6zMkUkQls6TEPf81RFcvQcVYBsVQ2n2f5D3Ws
3Gm2Pm7Ur3Ur4wC8sI7Zbk3DTW6pDzj+oSBuC1Z1A4qWIkFPhCrIZ28h2D6D5RsNW1671K0u7jRE
lt7dJJJor6Ym9Waa5thatbwtb0la2o0XHiKHYqpRFpH5SrqYSHzdrz6vFNNa/XRaK1JrVI7GRjI2
nfVgkcc4h9Rv3f7yteQVlVRfkzz/APkx5agGpW+uX+kW7yQabJZ38QdGZmuruGNnihmoF+vMxZZR
xATmQD8aqZ+XvK3kjzNrV1q+la7q91680st7KlnFbW9wI5reWaCSmnwxkM0UPGRSJpFDUkYKeKqX
T+SPIFz5IvvMV7p+r+Y4vTv9PkmvotLTULKO2AsHuokuUtI4ngXTl9M09TuyliaKozyv5v0HyEbn
RrmHXJ5r/U1UXOszaFG81zdxtOz+uk9rybgEYpOfWAeMKtCAFWUv+c3kyy1SHSPMDzeXtWubv6jb
WV+I3MkvCNwfVs5LuBFInTd5FpXemKofVPzo8lfo+W50yV9a0xQ0V7qmnPbvb2jtMLZBOXmjk+OV
14+mjfCQ32SCVWT+TvNlh5r0CDW7CNorW4LCNXltZz8JoavZzXUX0c6joQDiqd4q7FXYqor/AL2S
/wDGOP8A4k+Kq2KuxVBX8bTOIl3LQTlF7c6KoP3ORkJC3Iwy4Rf9KP6f1Ktw6y6fLIm6vEzL1GxW
oyYLRKJBoojFDsVdirsVSaymhk82ap6bq/CysUfiwPFhNd1Bp0OKpzirsVQGuaHput6e1hqCyNbl
45QYZpraVZInDo8c0DxSoyso3VhiqHsPKeg2MGnW9tA4h0mRZtNR555RCy2rWY4eo7fD6EjLx+zU
lqct8Vb0Wv6S1/8A5j0/6gbXFU2xV2KsSvvyp8h31PrGnPWhUmO6u4iVaS4lZGMcqEoz3sxZTseW
+yrRVbfflh5JaxhtlsJIkhe2ELQ3V3FInougjKSxypIrIEFGDVxVEaX+Wvk3Sp4JtPs5YBayJPbW
wu7s20c0cRhEiWzSmAOUYhm4Vbq1Tviqrb/l95St9cOuRWTDUvXe5SRri4ZI5ZefqtFC0hij9QzO
zhFAZjyarUOKpZL+TvkSXzC2vPbXJvpWme5BvLoxztNLFN+9UyEsiPACkVfSFT8BNKKqlr+UfkGz
mhnsbCeyng4elNa319BIAnKgLxTozD94wIJoRsa0GKo/y95L8vaBql7caXDNDLd8p7pnurqcSy3D
1kd1mlkDN+6XiSPgHILQM1VVmqfl15U1O2FrdQ3S263L3yx29/fWwFzJPLctKPQnjoxmuHb7uyrR
VEXnkjy7d2L2M0dyLWWdrm4jjvLyL15JF4OLho5VaZGXZo5CyEdsVQGk/lb5O0ie2n0+K+hltHeS
F/0pqT/3jK7o3O4bnGzoGaN6oTvSuKq+u+RPK9+UvJrNkns1keAW089rGXMn1jlJFBJFHKRP+9Uu
DR/iFDviqa6JoWnaLZtaWAl9N5GllkuZ57uZ5GABaSe5eWVzRQByY0AAGwxVMMVdirsVUVr9cl8P
Tj/4k+Kq2KuxVQf/AHvh/wCMUv8AxKPI9W0fQfeP0qMdf0ItNz9WH3+njHkFz/XL3lG5JqdirsVd
iqU21f8AFeo+H1Cx/wCT13iqmvnbyY10LNde05rtpPRW3F3AZDITx4BOfLly2piqdYq881HXvNlr
5/nt1OpSaaG9OGzTTmlsDFJaxCGf63Hbs/q/XpGR1M/FYxyZVUF8VYtoHmf805NZ0WJ5NYutNmvY
0upL/S/qjvG8Np66yKunxqscMslxxdpINh8LzU4FV6nosjfpjXo/Tbj9dQ+rVeNfqNrt15V+jFU5
xV2KuxVRuzSJf+MkQ++RcVVsVdirsVdiqip/0yUeEcZ+9nxVWxV2KuxVRvDSznPhG5/4U4qrYq7F
XYq7FVFT/pko8I4z97PiqtirsVUPtX/h6UX3+q38PSyPVt5Q95+7+1RQ00VT4WwP/JPGPILm+uXv
KNyTU7FXYq7FUmspGfzZqgaNo+NlYgFivxD1rv4hxLbfOmKvMdNvEb85rrQLlYxpCXbR6fp4gRbb
lDYRXdPhtGT1FlYyjlcK3elAKqvZ8VdirsVSnRf+Olr3/Men/UDa4qm2KuxV2KqV0QIlr/vyP/k4
uKquKuxV2KuxVSUj63IO/px7f7J8VVcVdirsVUrwgWk5OwEbVP8AsTiqrirsVdirsVUlI+tyDv6c
e3+yfFVXFXYqoJ/vfN/xii/4lJkerafoHvP6FGMgaKpOwFsKn/nnjHkFzfXL3lG5JqdirsVdiqU2
3/KV6j/zAWP/ACeu8VeaeXo7CD83jb397crrc0lxeR6XfqJ1YCBoRdWz6fMlpC3o/BzubYTMnwcu
5Vew4q881HyLrz+f5/MVna6aUmbbUnmkjv1hltYrR7ai28g9KLi9wg9X4pPhotS4VYx5a/JrzRpW
vaRqYt9FsYLK5SWSwtSs8MQWC1hmngE1irevcfVnLGNoWVmBLyUKlV6joqzfpfXjzX0frqfBxPLl
9Rtd+XKlPbjiqc4q7FXYqpXQrEv/ABkj/wCTi4qq4q7FXYq7FVJR/pch/wCK4/8AiT4qq4q7FXYq
pXgraTj/AIrb/iJxVVxV2KuxV2KqSj/S5D/xXH/xJ8VVcVdiqhD8V3cP2UJFT3UF6/8AJTIjm2y2
iB7z+j9CiBXTrke9x/xN8Yrl5/AfcEbkmp2KuxV2KpNZLMPNeqeoysDZWXDipWi+td0BqzVPvtir
xvyxrHlvS/zavrq1uYbbRr3UGFtBAxUGWe3SAhrVLhHDvdcuXK0bc8i1N1Ve+4qkr+cfLya++gvc
SLqMalnBgnEA4xiZk+s+n9X9QRMHKepy4mtKYqhNL/MfybqZtFtb51lvrk2dpBcW1zbTPMIFudop
445OHoyK4kK8KMN9xiqP0X/jpa//AMx6f9QNriqbYq7FXYqo3YrEv/GSL/k4uKq2KuxV2KuxVRUf
6ZKf+K4/+JPiqtirsVdiqjeCtnOPGN/+InFVbFXYq7FXYqoqP9MlP/Fcf/EnxVWxV2KqFt/fXX/G
Uf8AJpMiOrbk5R936SogV025Hibj/ib4xXLz+A+4I3JNTsVdirsVSm2/5SvUf+YCx/5PXeKsAbWv
OcP52wafd6q0flu4meKxsREOEp/RrzNEW4bEPD6qvzJ+FhSjUCr1XFWLX35f2l35hk1r9KX0BlkE
z2EZtjbmX0o7aR/3kDygy20XotSSnEkrxejBVKtM/JfyzZalZarNf6pfarY3EM8V7NdmIstvCsEU
MkNqtvbuipGtaxcm/aYgkYqyXRYIf0xr03pr6311FElBy4/UbU0r1piqc4q7FXYqo3dfSWn+/Iun
/GRfHFVbFXYq7FXYqorX65L4enH8vtPiqtirsVdiqjeV+pz06+m/Tr9k+OKq2KuxV2KuxVRWv1yX
w9OP5fafFVbFXYqoWnxetJ/vyVtvDhSP8eFcjFtydB3D79/0qO/6Ouh+0DcVHfdmI6+xrjFcvMe4
fcjck1OxV2KuxVJrKGGLzZqhjjVOdlYs5UAcmM13UmnU4q8q03y7oNh/zkALjSo4Uv2kmOoyS3Mc
k7xyWLMVUfWJZ2b1Ch4yRgBNx0Wqr27FWIz+erqHzZPpDadGdNgeSBr4XJ+sG4iskvyPq3pcfTMU
gUP61eW3HviqVaJ+ZnmDULiyhm0Oyje4u4baaGDUpJ5xFPbW92J4YzZxCVYoroGbkycKbFqrVVlW
izL+mNeio3L66jV4txp9Rtf26ca+1cVTnFXYq7FVG7NIl/4yRf8AJxcVVsVdirsVdiqip/0yUf8A
Fcf/ABJ8VVsVdirsVUbw0s5z4Rv/AMROKq2KuxV2KuxVRU/6ZKP+K4/+JPiqtirsVULHe3DdpGeR
f9V3LL+ByMeTbm+qu6h8goyGkOonwJ/5MJiOq5OUfd+ko3JNTsVdirsVSaymWTzZqgUMOFlYqeSs
u4mu+nICo9xirxbyr5ivn/5yHvrWR0iW8vp0l08rfxzI8Olp+8+NorV0ZY1K8oy5BqPhHIKvoLFU
rufKnle61P8ASt1o9jPqlIx9fltoXuKQussQ9VlL/BIiuu+zAEbjFUHbfl3+X9rNbT2vlnSYJrKT
17OWKxtkaGWob1ImVAUaqg8l32xVFaL/AMdLXv8AmPT/AKgbXFU2xV2KuxVSujSJf+Mkf/JxcVVc
VdirsVdiqkp/0uQf8Vx/8SfFVXFXYq7FVK8NLSc/8Vt/xE4qq4q7FXYq7FVJT/pcg/4rj/4k+Kqu
KuxVQ0//AHgtv+MSf8RGRjyDbn+uXvKi+0Won3J8f90JiOq5OUfd+ko3JNTsVdirsVSm2/5SvUf+
YCx/5PXeKoaPyF5Rj80P5pTT1GuyMHa8LymjiIwcljLekrek7LyC13PicVT/ABV2KsH846n5qtvN
ujW+ly36Wcr23OG2s1uLSYNeRpdi7uDBN9XEdoWeP95HU926YqnGmnVBrWum3WE2wvYywYt6jN9S
tqgU+EbdK5E30bYcFeq7TWLUY3lEUkU0DsSq+ohCkiv7a8l7eO/bESZSwECwQfcf0c2pZ7yWaSOz
MY9AfvDKrFWc7hAystKDqaHqPfASeixhAAGd793d3/q5cmvT1Yn1jLGH+GloP7qn7VZCvOu53p4b
datSTxYuVH39fldfg78qSur6f0kRrKUTGSL4TxMYJkXcyKW2r7V26dMeI9y+DHnxCvt+X4HmvWbX
QRytrd+VTtKyce9G+B60rx260rtWgbl3MjHD/Ol8v2j3/ZvVmmF1aMLqaYyq5AulAbgopxVo1qxU
A05b9KntjuN1BjP0gV3d/wAT18vkqLqsBNfTl9ImkUwQuknaq8OTU8KjfqNqVeMMTppd4vuvl77c
Uv7kAljZRU5AKVaUkjYNUMi8etByr406u58lBhD+mfs/Wfs/UHR9TmuWRQtvKsKieVk5AuGcL6Y5
bqdz8tutaNkpMccd/qHQeXn5/p8uYhptWX4zbQuoG8UcpLk9+LMiKfkafPG5dyBHEduI++tvsJ/T
7lj314eUCWciXRHwswVoRXbnzDLVVP7OzkdseI926RhhzMhw/b7qrn57x83Jey203o6i6AStS3uQ
BHGxalI6F2bnWtB3GPFXNTiExeMcuY5n38uS/VLy0gs7j1pFUiJjwJHI8lagC9Ty4mnjkjIBqx4p
T5B0dpLPSS9YktuLQEekngDQAufHkSK9MiI3zbJZRHaHz6n9Xw+K2Ob6kTBcsRbjeC4apUKT9h26
Ar0BbqKdTXEGuayj4m8fq6j9IHn5cvdS1rq8u2rprxCBDQ3D/vEcmn2ODCoUE13G4p4nGyeTIY4Q
/vLvu5Ee+x+Busp5gkjMhMMDKKpAtZOZ68WY8eJ2AqK7E+xA9TL9wDXqPnyr77/s80TaTJPM8qqV
JRVZWpyDI8isppUbMD0NMmDbjThwmkVhYIfUf+Ofc/8AGJ/+InIy5FtwfXH3hEZJqSfV7iZDd2tr
T6zPAJFUio+EPyZh4EIqV8SMrkTdDm5mKETESn9IJH3frJ+aIbUnd45YCjWX7oSMQeRM5otDUBeP
JSa12PbueLu5MRgABEr49/8AY/r3+S5tSZJSzw0s+bRrOpZm5pWvKMLstVK1r17b48fyQMAI2Pr5
1+2+fVGQyCWJJAGUOAwDDi1D4g9MkC0SjRpdhYpNZGY+a9U9RFX/AEKyCFWLVX1ruhNVWh9t8VTn
FXYq7FXYqlOij/clr/vfp/1A2uKppLDFNGY5VDoaEqfEGoPzBFRgItlGRibC23t4reFYogQi1I5M
WJJNSSzEkkk1qTiBSZzMjZVMLBRuxWJf+MkR+6RcVVsVdirsVdiqio/0yU+McY+5nxVWxV2KrZY0
lieKQVSRSrjpUEUPTEhMZEGxzCDfTbC2splt4EjHCQggCoLLQ7mvWm+REQOTZkzzn9RJR2SanYq7
FXYqlssa22qNdxgKsqxR3SgAcizsqP7lTQfL5ZA7G3IgeOPCem4/SPj96ZZNx0Pf0NsyH7MjJEw/
yZHCN+DZGXJtw/VfdZ+QtEZJqUbxQbSfxMbivtQ4qu+rW/CSP0k9OUsZU4ijlvtch3r3rgoM/ElY
NmxybhhjhiWKNeKLsB1+kk7knucQKRKRkbK/CxdiqU2w/wCdr1E/8uFj/wAnrvFU2xVxBIIBoT3H
UffirzKP8uPM9r5xbWUltNUkZmr5gvpFh1VoZreO2e2ZbSyjh9KGjTxhSvJ6KQpLSYqlHlv8pfMG
mX2kvJoPly3trS/hvZpbOeVbmD0be2hJtJPqKU9aS2aWZKrzrxLfaYqvS9Fjf9Ma9J6jcPrqD0vh
41+o2u/2eVfpxVOcVdirsVUbuvpLT/fkX/JxcVVsVdirsVdiqitfrkvh6cf/ABJ8VVsVdirsVUby
v1OenX03p/wJxVWxV2KuxV2Kodo0luJ45FDxPEish3BBLggj5YkJjIg2OYasmkX1LaVi7wEKsjfa
dCAVY+/VSe5B6dMjHubcoBqQ/i+w936fcV13u1vGfsySiv8AsFaQfigxKMfU9w+/b9KvkmpRvK/U
56dfTen/AAJxVWxV2KuxV2KpNZRunmzVC0jSBrKxKhuPwj1rv4RxC7fOuKpzirsVSV/OPl5NffQX
uJF1GNSzgwTiAcYxMyfWfT+r+oImDlPU5cTWlMVQml/mP5N1M2i2t86y31ybO0guLa5tpnmEC3O0
U8ccnD0ZFcSFeFGG+4xVH6L/AMdLX/8AmPT/AKgbXFU2xV2KuxVRu/7pf+MkXv8A7sXFVbFXYq7F
XYqor/vZL/xjj/4k+Kq2KuxV2KqN5/vHP/xjf3/ZOKq2KuxV2KuxVRX/AHsl/wCMcf8AxJ8VWsOG
oIw2EsTK57VjYFB9ztkeraN8Z8j9/P7gsika6uRIq0tYeQjY1BeQ7cl/yApIB/ar7AlBs+TKUeCN
fxH7B+v7vsAvJNCjef7xz/8AGN/f9k4qrYq7FXYq7FUptv8AlK9R/wCYCx/5PXeKptiriAwKsKg7
EHoRirDIfyp8v2epC50mefSLFZPWTRbCOzhsVldEhmdI/q5dTPCnpvxelGLLxf4wqhNM/JfyzZal
ZarNf6pfarY3EM8V7NdmIstvCsEUMkNqtvbuipGtaxcm/aYgkYqyXRYYTrGvTemvrC9RPUoOXH6j
amletMVTnFXYq7FVG7NIl/4yRD75FxVWxV2KuxV2KqKn/TJR4Rxn72fFVbFXYq7FVG8NLOc+Ebn/
AIU4qrYq7FXYq7FVFT/pko8I4z97PirrqCSUIYpBHLE3NGZeS1KlTVQVrs3jgIbMcwLsWCvgiWGG
OFSSsahFJ60UU7YgUxnLiJJ6r8LFRvDSznPhG5/4U4qrYq7FXYq7FUmsoYY/NmqenGqF7KxdyoA5
MZrupNOpxVOcVcSACT0G+wqfuGKsGsvzNN7rrWsGlumjh5oBd3JuLS9+sQWi3jBtPubaF0jMb0V2
cEn9njQlVKtG/OO+vNbsdIv9Gt7KW4lhW4uEu7m5gjju4baW24yx2PD1JGvFj4zGJeVArsWGKsts
9SSx1jWorq3uh612k1vJFaXM0bx/U7dOQkijdPtoy0rXbFUf/iGw/wB9Xn/SDef9UcVd/iGw/wB9
Xn/SDef9UcVd/iGw/wB9Xn/SDef9UcVULzzDaCFfTt72RvViqosbwUX1V5N/c/srU4qr/wCIbD/f
V5/0g3n/AFRxV3+IbD/fV5/0g3n/AFRxV3+IbD/fV5/0g3n/AFRxV3+IbD/fV5/0g3n/AFRxVQTz
DafXpgbe9EXpRcZPqN5Qtyk5LT0f2RT78VV/8Q2H++rz/pBvP+qOKu/xDYf76vP+kG8/6o4q7/EN
h/vq8/6Qbz/qjiqhf+YbQWNwYre9ll9J/TjFjeAs3E0Wvo9ziqv/AIhsP99Xn/SDef8AVHFXf4hs
P99Xn/SDef8AVHFXf4hsP99Xn/SDef8AVHFXf4hsP99Xn/SDef8AVHFVBPMNp9emBt70RelFxk+o
3lC3KTktPR/ZFPvxVX/xDYf76vP+kG8/6o4q7/ENh/vq8/6Qbz/qjirv8Q2H++rz/pBvP+qOKqF/
5htBY3Bit72WX0n9OMWN4CzcTRa+j3OKq/8AiGw/31ef9IN5/wBUcVd/iGw/31ef9IN5/wBUcVd/
iGw/31ef9IN5/wBUcVd/iGw/31ef9IN5/wBUcVQmk3f1zzJqVzFBcR2wtLOJZbiCa35SJLdF1UTJ
GW4h1NRtviqe4q7FUrufKnle61P9K3Wj2M+qUjH1+W2he4pC6yxD1WUv8EiK677MARuMVSmfyTot
hJp48veWdDgNtLLNHdPBHCbOWRAPXt4YYD6jsVUOPViJA+3irzu88x/mtH+jFe41pJ2SzGqLbaQk
ka2bxv8AXLtG+py/6XHIAFg5Hb/dTYq9S8kXOrXPlawn1Zp3vnV+cl1CLad0EjCJ5YQkPpu0fEsv
BaHsMVTzFXYq89/NXWvzF060jby3aEReuvC6sxLeXMlIZSYpbUWN0I0MoQcg3xdC8NeYVRX5Yan5
qvo7869LfylBbH/chZrZGK6aMm7gtwILb1YI3oEk+Ov87YqzjFXYqh9Rk1GOylfToIbm+A/cQXEr
W8TNXo8qR3DIKdxG2KvF73zV+bXraxHIusWk8NzcjT/qdgLu3eVfXFnajnpilbd/TQyzerKN1/fR
nkuKvcMVdirsVYN+Y+ufmRptq3+GdDN9CZIj9ds5YZ7pEG8oa0uRbp8RoiskkmxLFRQYq3+XGp+a
r2+1ddalv5YIhCY/r9mtmIrppbkXEFsRBb+tAkaQFJKyV5fbOKs4xV2KofUZNRjspX06CG5vgP3E
FxK1vEzV6PKkdwyCncRtirxzWfNX5hm+1UaZdeYY4omdbKBtF9St8kcrRwpMdORW0+WTgglb94vH
kzoHWqr2vFXYq7FUl853OqWvlfUJ9LM63scYMb2sIuLhV5AO8MJSUSOqVKrwap7Hpiqn5GutWuvL
NvNqr3Et0ZbpUmvIBa3MlutzIttJNAI4PTd7cIzL6a7n7IxVPsVdirsVeLa95p8/fpPWF0e88xi1
hkkTTo5dDBLXiJKYolk/R/A2Ez8E9QkuvGrSKGWqr2nFXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXY
q8rtPz5tjfSWN15dv2uhPdRRx2b20xCW2oLp4aT1ZYApeWaEDiW3Y1oBXFU30n849E1M6m0Oj6xF
a6Vp36Tub+W0AtDS3S5e1S4WRozcIkoqhIFa0YjfFVPSPzistW12HSLfy/q1sz3MdrLfXsCxWYke
JpHjjuImnikljoAych3IJAxVU8l/m3ZeZL6LT5NKu7C6lnubUyuYHt1uLcGX0OSStKXNtxl5enw3
py5fDiqS3H/ORHl9dM1C8i0PVFk06F5LiK5FrD6UnF/RinCzyyxtK6caCJmWoLKBiqK0T89tJ1TU
LXTU0DV3vbi+nsJTZ24u4YBBJGhuZ2jYSRwfvk+Jox40K0Yqq2ofnPb6brmp6Vc6BfXJsZjHFNYP
byh0owUyC4ktPTdnicBV5igqWFaBVF+XvzZsvMGv2+mWGmzwxPcT21zLeSRRTKY4WmhligjM5eGY
RSAM7RnbYNvRVnmKuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxVjE
f/Ksf0jL6f6F/SXqS+tx+qev6n1yP1uVPj5fXvS5139XjX46YqoWX/Kpfr1/9R/QH1/6if0p6H1P
1v0fxFfrHH4vq/Cn2/hpiqraf8qu/wASy/VP0J/iesXrel9U+v19P9zy4/vv7v7Ff2em2Ku0b/lV
3+I2/Qv6E/xJ6c/P6n9U+ven67fWK+n+94/WOfqduda/FirHrL/oXj9KyfU/8NfW/q0nL0/qfo+j
Sb6xwp+55cPV9fj8XD7fw0xVOZP+VPfpKx9T/D36T+s/7jOX1L1/rVR/cV+P1eVPs/Fiq2x/5Vf+
mNb4/Vf0n9aX9K/XudfX4Hj6X1r4eFOX9z8HLn+1yxVS0n/lUf8AiWy/QP1D9L+vd8P0R/c/WvSH
1j639U/0f1/S+z9Y+OnLh+1irOMVdirsVdirsVdirsVdirsVdir/AP/Z
+
+
+
+
+
+ 1221692d-4893-11ec-0000-ad99813ff131
+ uuid:ba9ebec8-3c1a-41cd-8018-ad4ad82a8638
+ proof:pdf
+
+
+ application/pdf
+
+
+ results/2011-10-25-ad/noiseSTA03.eps
+
+
+
+
+ grewe
+
+
+
+
+ gnuplot plot
+
+
+
+
+ 1
+ False
+ False
+
+ 127.000000
+ 80.080556
+ Millimeters
+
+
+
+
+ ArialMT
+ Arial
+ Regular
+ Open Type
+ Version 5.10
+ False
+ arial.ttf
+
+
+
+
+
+ Cyan
+ Magenta
+ Yellow
+ Black
+
+
+
+
+
+ Standard-Farbfeldgruppe
+ 0
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+endstream
endobj
3 0 obj
<>
endobj
4 0 obj
<>/Resources<>/Font<>/ProcSet[/PDF/Text]/Properties<>>>/Thumb 18 0 R/TrimBox[0.0 0.0 360.0 227.0]/Type/Page>>
endobj
15 0 obj
<>stream
+HWn\WpNpYŷ &$1plpb' "5-h4Bod=ȪS+OWߓ;>^[k^Z:R>=o.ËaáڂĆ/6_L ncg<3iÚzų^k[F[*n='}m5nгAv|_ʀG~O=Tx:ߡA}!4=S
5|K}
+;[KR+wʓۢp{4zFva4}=@x=P7#_p