exercises for sta and reconstruction
This commit is contained in:
parent
139c825030
commit
5eaa3ce2b4
19
pointprocesses/code/binnedRate.m
Normal file
19
pointprocesses/code/binnedRate.m
Normal file
@ -0,0 +1,19 @@
|
||||
function [time, rate] = binned_rate(spike_times, bin_width, dt, t_max)
|
||||
% Calculates the firing rate with the binning method. The hist funciton is
|
||||
% used to count the number of spikes in each bin.
|
||||
% Arguments:
|
||||
% spike_times, vector containing the times of the spikes.
|
||||
% bin_width, the width of the bins in seconds.
|
||||
% dt, the temporal resolution.
|
||||
% t_max, the tiral duration.
|
||||
%
|
||||
% Returns two vectors containing the time and the rate.
|
||||
|
||||
time = 0:dt:t_max-dt;
|
||||
bins = 0:bin_width:t_max;
|
||||
rate = zeros(size(time));
|
||||
|
||||
h = hist(spike_times, bins) ./ bin_width;
|
||||
for i = 2:length(bins)
|
||||
rate(round(bins(i - 1) / dt) + 1:round(bins(i) / dt)) = h(i);
|
||||
end
|
24
pointprocesses/code/convolutionRate.m
Normal file
24
pointprocesses/code/convolutionRate.m
Normal file
@ -0,0 +1,24 @@
|
||||
function [time, rate] = convolution_rate(spike_times, sigma, dt, t_max)
|
||||
% Calculates the firing rate with the convolution method.
|
||||
% Arguments:
|
||||
% spike_times, a vector containing the spike times.
|
||||
% sigma, the standard deviation of the Gaussian kernel in seconds.
|
||||
% dt, the temporal resolution in seconds.
|
||||
% t_max, the trial duration in seconds.
|
||||
%
|
||||
% Returns two vectors containing the time and the rate.
|
||||
|
||||
time = 0:dt:t_max - dt;
|
||||
rate = zeros(size(time));
|
||||
spike_indices = round(spike_times / dt);
|
||||
rate(spike_indices) = 1;
|
||||
kernel = gauss_kernel(sigma, dt);
|
||||
|
||||
rate = conv(rate, kernel, 'same');
|
||||
end
|
||||
|
||||
|
||||
function y = gauss_kernel(s, step)
|
||||
x = -4 * s:step:4 * s;
|
||||
y = exp(-0.5 .* (x ./ s) .^ 2) ./ sqrt(2 * pi) / s;
|
||||
end
|
22
pointprocesses/code/instantaneousRate.m
Normal file
22
pointprocesses/code/instantaneousRate.m
Normal file
@ -0,0 +1,22 @@
|
||||
function [time, rate] = instantaneous_rate(spike_times, dt, t_max)
|
||||
% Function calculates the firing rate as the inverse of the interspike
|
||||
% interval.
|
||||
% Arguments:
|
||||
% spike_times, vector containing the times of the spikes.
|
||||
% dt, the temporal resolutions of the recording.
|
||||
% t_max, the duration of the trial.
|
||||
%
|
||||
% Returns the vector representing time and a vector containing the rate.
|
||||
|
||||
time = 0:dt:t_max-dt;
|
||||
rate = zeros(size(time));
|
||||
|
||||
isis = diff([0 spike_times]);
|
||||
inst_rate = 1 ./ isis;
|
||||
spike_indices = [1 round(spike_times ./ dt)];
|
||||
|
||||
for i = 2:length(spike_indices)
|
||||
rate(spike_indices(i - 1):spike_indices(i)) = inst_rate(i - 1);
|
||||
end
|
||||
|
||||
|
19
pointprocesses/code/reconstructStimulus.m
Normal file
19
pointprocesses/code/reconstructStimulus.m
Normal file
@ -0,0 +1,19 @@
|
||||
function s_est = reconstructStimulus(spike_times, sta, stim_duration, dt)
|
||||
% Function estimates the stimulus from the Spike-Triggered-Average
|
||||
% (sta).
|
||||
% Arguments:
|
||||
% spike_times, a vector containing the spike times in seconds.
|
||||
% sta, a vector containing the spike-triggered-average.
|
||||
% stim_duration, the total duration of the stimulus.
|
||||
% dt, the sampling interval given in seconds.
|
||||
%
|
||||
% Returns:
|
||||
% the estimated stimulus.
|
||||
|
||||
s_est = zeros(round(stim_duration / dt), 1);
|
||||
|
||||
binary_spikes = zeros(size(s_est));
|
||||
binary_spikes(round(spike_times ./ dt)) = 1;
|
||||
|
||||
s_est = conv(binary_spikes, sta, 'same');
|
||||
|
32
pointprocesses/code/spikeTriggeredAverage.m
Normal file
32
pointprocesses/code/spikeTriggeredAverage.m
Normal file
@ -0,0 +1,32 @@
|
||||
function [sta, std_sta, valid_spikes] = spikeTriggeredAverage(stimulus, spike_times, count, sampling_rate)
|
||||
% Function estimates the Spike-Triggered-Average (sta).
|
||||
%
|
||||
% Arguments:
|
||||
% stimulus, a vector containing stimulus intensities
|
||||
% as a function of time.
|
||||
% spike_times, a vector containing the spike times
|
||||
% in seconds.
|
||||
% count, the number of datapoints that are taken around
|
||||
% the spike times.
|
||||
% sampling_rate, the sampling rate of the stimulus.
|
||||
%
|
||||
% Returns:
|
||||
% the sta, a vector containing the staandard deviation and
|
||||
% the number of spikes taken into account.
|
||||
|
||||
snippets = zeros(numel(spike_times), 2*count);
|
||||
valid_spikes = 1;
|
||||
for i = 1:numel(spike_times)
|
||||
t = spike_times(i);
|
||||
index = round(t*sampling_rate);
|
||||
if index <= count || (index + count) > length(stimulus)
|
||||
continue
|
||||
end
|
||||
snippets(valid_spikes,:) = stimulus(index-count:index+count-1);
|
||||
valid_spikes = valid_spikes + 1;
|
||||
end
|
||||
|
||||
snippets(valid_spikes:end,:) = [];
|
||||
|
||||
sta = mean(snippets, 1);
|
||||
std_sta = std(snippets,[],1);
|
BIN
pointprocesses/code/sta_data.mat
Normal file
BIN
pointprocesses/code/sta_data.mat
Normal file
Binary file not shown.
@ -301,6 +301,11 @@ oder durch Verfaltung mit einem Kern bestimmt werden. Beiden Methoden
|
||||
gemeinsam ist die Notwendigkeit der Wahl einer zus\"atzlichen Zeitskala,
|
||||
die der Beobachtungszeit $W$ in \eqnref{psthrate} entspricht.
|
||||
|
||||
\begin{exercise}{instantaneousRate.m}{}
|
||||
Implementiere die Absch\"atzung der Feuerrate auf Basis der
|
||||
instantanen Feuerrate. Plotte die Feuerrate als Funktion der Zeit.
|
||||
\end{exercise}
|
||||
|
||||
\subsubsection{Binning-Methode}
|
||||
Bei der Binning-Methode wird die Zeitachse in gleichm\"aßige
|
||||
Abschnitte (Bins) eingeteilt und die Anzahl Aktionspotentiale, die in
|
||||
@ -330,6 +335,10 @@ gemacht.
|
||||
Zeithistogramm mit der Binweite normiert.}\label{binpsth}
|
||||
\end{figure}
|
||||
|
||||
\begin{exercise}{binnedRate.m}{}
|
||||
Implementiere die Absch\"atzung der Feuerrate mit der ``binning''
|
||||
Methode. Plotte das PSTH.
|
||||
\end{exercise}
|
||||
|
||||
\subsubsection{Faltungsmethode}
|
||||
Bei der Faltungsmethode werden die harten Kanten der Bins der
|
||||
@ -365,6 +374,11 @@ von Vorteil sein kann. Die Wahl der Kernbreite bestimmt, \"ahnlich zur
|
||||
Binweite, die zeitliche Aufl\"osung von $r(t)$. Die Breite des Kerns
|
||||
macht also auch wieder eine Annahme \"uber die relevante Zeitskala des Spiketrains.
|
||||
|
||||
\begin{exercise}{convolutionRate.m}{}
|
||||
Verwende die Faltungsmethode um die Feuerrate zu bestimmen. Plotte
|
||||
das Ergebnis.
|
||||
\end{exercise}
|
||||
|
||||
\section{Spike-triggered Average}
|
||||
Die graphischer Darstellung der Feuerrate allein reicht nicht aus um
|
||||
den Zusammenhang zwischen neuronaler Antwort und einem Stimulus zu
|
||||
@ -382,11 +396,15 @@ Stimulus f\"ur jeden beobachteten Spike ein entsprechender Abschnitt
|
||||
ausgeschnitten wird und diese dann gemittelt werde (\figref{stafig}).
|
||||
|
||||
\begin{figure}[t]
|
||||
\includegraphics[width=0.5\columnwidth]{sta}
|
||||
\titlecaption{Spike-triggered Average eines P-Typ
|
||||
Elektrorezeptors.}{Der Rezeptor wurde mit einem ``white-noise''
|
||||
Stimulus getrieben. Zeitpunkt 0 ist der Zeitpunkt des beobachteten
|
||||
Aktionspotentials.}\label{stafig}
|
||||
\includegraphics[width=\columnwidth]{sta}
|
||||
\titlecaption{Spike-triggered Average eines P-Typ Elektrorezeptors
|
||||
und Stimulusrekonstruktion.}{\textbf{A)} Der STA: der Rezeptor
|
||||
wurde mit einem ``white-noise'' Stimulus getrieben. Zeitpunkt 0
|
||||
ist der Zeitpunkt des beobachteten Aktionspotentials. Die Kurve
|
||||
ergibt sich aus dem gemittelten Stimulus je 50\,ms vor und nach
|
||||
einem Aktionspotential. \textbf{B)} Stimulusrekonstruktion mittels
|
||||
STA. Die Zellantwort wird mit dem STA gefaltet um eine
|
||||
Rekonstruktion des Stimulus zu erhalten.}\label{stafig}
|
||||
\end{figure}
|
||||
|
||||
Aus dem STA k\"onnen verschiedene Informationen \"uber den
|
||||
@ -402,13 +420,26 @@ abgelesen werden, die das System braucht, um auf den Stimulus zu
|
||||
antworten.
|
||||
|
||||
Der STA kann auch dazu benutzt werden, aus den Antworten der Zelle den
|
||||
Stimulus zu rekonstruieren (\figref{reverse_reconstruct_fig}). Bei der
|
||||
Stimulus zu rekonstruieren (\figref{stafig} B). Bei der
|
||||
\determ{invertierten Rekonstruktion} wird die Zellantwort mit dem STA
|
||||
verfaltet.
|
||||
|
||||
\begin{figure}[t]
|
||||
\includegraphics[width=\columnwidth]{reconstruction}
|
||||
\titlecaption{Rekonstruktion des Stimulus mittels STA.}{Die
|
||||
Zellantwort wird mit dem STA verfaltet, um eine Rekonstruktion des
|
||||
Stimulus zu erhalten.}\label{reverse_reconstruct_fig}
|
||||
\end{figure}
|
||||
\begin{exercise}{spikeTriggeredAverage.m}{}
|
||||
Implementiere eine Funktion, die den STA ermittelt. Verwende dazu
|
||||
den Datensatz \codeterm{sta\_data.mat}. Die Funktion sollte folgende
|
||||
R\"uckgabewerte haben:
|
||||
\begin{itemize}
|
||||
\item den Spike-Triggered-Average.
|
||||
\item die Standardabweichung der individuellen STAs.
|
||||
\item die Anzahl Aktionspotentiale, die dem STA zugrunde liegen.
|
||||
\end{itemize}
|
||||
\end{exercise}
|
||||
|
||||
\begin{exercise}{reconstructStimulus.m}{}
|
||||
Rekonstruiere den Stimulus mithilfe des STA und der Spike
|
||||
Zeiten. Die Funktion soll Vektor als R\"uckgabewert haben, der
|
||||
genauso gro{\ss} ist wie der Originalstimulus aus der Datei
|
||||
\codeterm{sta\_data.mat}.
|
||||
\end{exercise}
|
||||
|
||||
|
||||
|
@ -22,31 +22,7 @@ def plot_sta(times, stim, dt, t_min=-0.1, t_max=.1):
|
||||
sta += snippet
|
||||
count += 1
|
||||
sta /= count
|
||||
|
||||
fig = plt.figure()
|
||||
fig.set_size_inches(5, 5)
|
||||
fig.subplots_adjust(left=0.15, bottom=0.125, top=0.95, right=0.95, )
|
||||
fig.set_facecolor("white")
|
||||
|
||||
ax = fig.add_subplot(111)
|
||||
ax.plot(time, sta, color="darkblue", lw=1)
|
||||
ax.set_xlabel("time [s]")
|
||||
ax.set_ylabel("stimulus")
|
||||
ax.xaxis.grid('off')
|
||||
ax.spines["right"].set_visible(False)
|
||||
ax.spines["top"].set_visible(False)
|
||||
ax.yaxis.set_ticks_position('left')
|
||||
ax.xaxis.set_ticks_position('bottom')
|
||||
|
||||
ylim = ax.get_ylim()
|
||||
xlim = ax.get_xlim()
|
||||
ax.plot(list(xlim), [0., 0.], zorder=1, color='darkgray', ls='--')
|
||||
ax.plot([0., 0.], list(ylim), zorder=1, color='darkgray', ls='--')
|
||||
ax.set_xlim(list(xlim))
|
||||
ax.set_ylim(list(ylim))
|
||||
fig.savefig("sta.pdf")
|
||||
plt.close()
|
||||
return sta
|
||||
return time, sta
|
||||
|
||||
|
||||
def reconstruct_stimulus(spike_times, sta, stimulus, t_max=30., dt=1e-4):
|
||||
@ -57,25 +33,57 @@ def reconstruct_stimulus(spike_times, sta, stimulus, t_max=30., dt=1e-4):
|
||||
y = np.zeros(len(stimulus))
|
||||
y[indices] = 1
|
||||
s_est[i, :] = np.convolve(y, sta, mode='same')
|
||||
time = np.arange(0, t_max, dt)
|
||||
return time, np.mean(s_est, axis=0)
|
||||
|
||||
plt.plot(np.arange(0, t_max, dt), stimulus[:,1], label='stimulus', color='darkblue', lw=2.)
|
||||
plt.plot(np.arange(0, t_max, dt), np.mean(s_est, axis=0), label='reconstruction', color='gray', lw=1.5)
|
||||
plt.xlabel('time[s]')
|
||||
plt.ylabel('stimulus')
|
||||
plt.xlim([0.0, 0.25])
|
||||
plt.ylim([-1., 1.])
|
||||
plt.legend()
|
||||
plt.plot([0.0, 0.25], [0., 0.], color="darkgray", lw=1.5, ls='--', zorder=1)
|
||||
plt.gca().spines["right"].set_visible(False)
|
||||
plt.gca().spines["top"].set_visible(False)
|
||||
plt.gca().yaxis.set_ticks_position('left')
|
||||
plt.gca().xaxis.set_ticks_position('bottom')
|
||||
|
||||
def plot_results(sta_time, st_average, stim_time, s_est, stimulus, duration, dt):
|
||||
sta_ax = plt.subplot2grid((1, 3), (0, 0), rowspan=1, colspan=1)
|
||||
stim_ax = plt.subplot2grid((1, 3), (0, 1), rowspan=1, colspan=2)
|
||||
|
||||
fig = plt.gcf()
|
||||
fig.set_size_inches(7.5, 5)
|
||||
fig.subplots_adjust(left=0.15, bottom=0.125, top=0.95, right=0.95, )
|
||||
fig.set_size_inches(15, 5)
|
||||
fig.subplots_adjust(left=0.075, bottom=0.12, top=0.92, right=0.975)
|
||||
fig.set_facecolor("white")
|
||||
fig.savefig('reconstruction.pdf')
|
||||
|
||||
sta_ax.plot(sta_time * 1000, st_average, color="dodgerblue", lw=2.)
|
||||
sta_ax.set_xlabel("time [ms]", fontsize=12)
|
||||
sta_ax.set_ylabel("stimulus", fontsize=12)
|
||||
sta_ax.set_xlim([-50, 50])
|
||||
# sta_ax.xaxis.grid('off')
|
||||
sta_ax.spines["right"].set_visible(False)
|
||||
sta_ax.spines["top"].set_visible(False)
|
||||
sta_ax.yaxis.set_ticks_position('left')
|
||||
sta_ax.xaxis.set_ticks_position('bottom')
|
||||
sta_ax.spines["bottom"].set_linewidth(2.0)
|
||||
sta_ax.spines["left"].set_linewidth(2.0)
|
||||
sta_ax.tick_params(direction="out", width=2.0)
|
||||
|
||||
ylim = sta_ax.get_ylim()
|
||||
xlim = sta_ax.get_xlim()
|
||||
sta_ax.plot(list(xlim), [0., 0.], zorder=1, color='darkgray', ls='--', lw=0.75)
|
||||
sta_ax.plot([0., 0.], list(ylim), zorder=1, color='darkgray', ls='--', lw=0.75)
|
||||
sta_ax.set_xlim(list(xlim))
|
||||
sta_ax.set_ylim(list(ylim))
|
||||
sta_ax.text(-0.225, 1.05, "A", transform=sta_ax.transAxes, size=14)
|
||||
|
||||
stim_ax.plot(stim_time * 1000, stimulus[:,1], label='stimulus', color='dodgerblue', lw=2.)
|
||||
stim_ax.plot(stim_time * 1000, s_est, label='reconstruction', color='red', lw=2)
|
||||
stim_ax.set_xlabel('time[ms]', fontsize=12)
|
||||
stim_ax.set_xlim([0.0, 250])
|
||||
stim_ax.set_ylim([-1., 1.])
|
||||
stim_ax.legend()
|
||||
stim_ax.plot([0.0, 250], [0., 0.], color="darkgray", lw=0.75, ls='--', zorder=1)
|
||||
stim_ax.spines["right"].set_visible(False)
|
||||
stim_ax.spines["top"].set_visible(False)
|
||||
stim_ax.yaxis.set_ticks_position('left')
|
||||
stim_ax.xaxis.set_ticks_position('bottom')
|
||||
stim_ax.spines["bottom"].set_linewidth(2.0)
|
||||
stim_ax.spines["left"].set_linewidth(2.0)
|
||||
stim_ax.tick_params(direction="out", width=2.0)
|
||||
stim_ax.text(-0.075, 1.05, "B", transform=stim_ax.transAxes, size=14)
|
||||
|
||||
fig.savefig("sta.pdf")
|
||||
plt.close()
|
||||
|
||||
|
||||
@ -84,5 +92,6 @@ if __name__ == "__main__":
|
||||
punit_stim = scio.loadmat('p-unit_stimulus.mat')
|
||||
spike_times = punit_data["spike_times"]
|
||||
stimulus = punit_stim["stimulus"]
|
||||
sta = plot_sta(spike_times, stimulus, 5e-5, -0.05, 0.05)
|
||||
reconstruct_stimulus(spike_times, sta, stimulus, 10, 5e-5)
|
||||
sta_time, sta = plot_sta(spike_times, stimulus, 5e-5, -0.05, 0.05)
|
||||
stim_time, s_est = reconstruct_stimulus(spike_times, sta, stimulus, 10, 5e-5)
|
||||
plot_results(sta_time, sta, stim_time, s_est, stimulus, 10, 5e-5)
|
||||
|
Reference in New Issue
Block a user