[regression] n-dim is simply n times 1 dim

This commit is contained in:
Jan Benda 2020-12-23 18:16:27 +01:00
parent 60a94c9ce6
commit 5a6cca59d3

View File

@ -259,6 +259,7 @@ There is no need to calculate this derivative analytically, because it
can be approximated numerically by the difference quotient can be approximated numerically by the difference quotient
(Box~\ref{differentialquotientbox}) for small steps $\Delta c$: (Box~\ref{differentialquotientbox}) for small steps $\Delta c$:
\begin{equation} \begin{equation}
\label{costderivativediff}
\frac{{\rm d} f_{cost}(c)}{{\rm d} c} = \frac{{\rm d} f_{cost}(c)}{{\rm d} c} =
\lim\limits_{\Delta c \to 0} \frac{f_{cost}(c + \Delta c) - f_{cost}(c)}{\Delta c} \lim\limits_{\Delta c \to 0} \frac{f_{cost}(c + \Delta c) - f_{cost}(c)}{\Delta c}
\approx \frac{f_{cost}(c + \Delta c) - f_{cost}(c)}{\Delta c} \approx \frac{f_{cost}(c + \Delta c) - f_{cost}(c)}{\Delta c}
@ -443,7 +444,7 @@ are searching for the position of the bottom of the deepest valley
and and
\[ \frac{\partial f(x,y)}{\partial y} = \lim\limits_{\Delta y \to 0} \frac{f(x, y + \Delta y) - f(x,y)}{\Delta y} \] \[ \frac{\partial f(x,y)}{\partial y} = \lim\limits_{\Delta y \to 0} \frac{f(x, y + \Delta y) - f(x,y)}{\Delta y} \]
one can calculate the slopes in the directions of each of the one can calculate the slopes in the directions of each of the
variables by means of the respective difference quotient variables by means of the respective difference quotients
(see box~\ref{differentialquotientbox}). \vspace{1ex} (see box~\ref{differentialquotientbox}). \vspace{1ex}
\begin{minipage}[t]{0.5\textwidth} \begin{minipage}[t]{0.5\textwidth}
@ -489,6 +490,10 @@ $p_j$ the respective partial derivatives as coordinates:
\label{gradient} \label{gradient}
\nabla f_{cost}(\vec p) = \left( \frac{\partial f_{cost}(\vec p)}{\partial p_j} \right) \nabla f_{cost}(\vec p) = \left( \frac{\partial f_{cost}(\vec p)}{\partial p_j} \right)
\end{equation} \end{equation}
Despite the fancy words this simply means that we need to calculate the
derivatives in the very same way as we have done it for the case of a
single parameter, \eqnref{costderivativediff}, for each parameter
separately.
The iterative equation \eqref{gradientdescent} of the gradient descent The iterative equation \eqref{gradientdescent} of the gradient descent
stays exactly the same, with the only difference that the current stays exactly the same, with the only difference that the current
@ -497,7 +502,8 @@ parameter value $p_i$ becomes a vector $\vec p_i$ of parameter values:
\label{ndimgradientdescent} \label{ndimgradientdescent}
\vec p_{i+1} = \vec p_i - \epsilon \cdot \nabla f_{cost}(\vec p_i) \vec p_{i+1} = \vec p_i - \epsilon \cdot \nabla f_{cost}(\vec p_i)
\end{equation} \end{equation}
The algorithm proceeds along the negative gradient For each parameter we subtract the corresponding derivative multiplied
with $\epsilon$. The algorithm proceeds along the negative gradient
(\figref{powergradientdescentfig}). (\figref{powergradientdescentfig}).
For the termination condition we need the length of the gradient. In For the termination condition we need the length of the gradient. In